Member of ANR Project on Mean Field Games (French National Research Agency ANR-16-CE40-0015-01)
Organization committee of the Conference HJ2016: Hamilton-Jacobi Equations: new trends and applications (2016)
Title: Hamilton-Jacobi equations and mean field games on networks
Day of defense: October 17, 2018
Advisor: Yves Achdou and Olivier Ley
[5] Vo Anh Khoa, Manh-Khang Dao. Convergence analysis of a variational quasi-reversibility approach for an inverse hyperbolic heat conduction problem — J. Inverse Ill-Posed Probl., 30(2): 251-264, 2022 (pdf on arXiv-server).
[4] Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou. Finite Horizon Mean Field Games on Networks — Calc. Var. Partial Differential Equations, 59(157), 2020 (pdf on HAL-server).
[3] Manh-Khang Dao, Boualem Djehiche. Hamilton-Jacobi equations for optimal control on multidimensional junctions with entry costs — NoDEA Nonlinear Differential Equations Appl., 27(23), 2020 (pdf on HAL-server).
[2] Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou. A Class of Infinite Horizon Mean Field Games on Networks — Netw. Heterog. Media, 14(3): 537-566, 2019 (pdf on HAL-server).
[1] Manh-Khang Dao. Hamilton-Jacobi equations for optimal control on networks with entry or exit costs — ESAIM: Control, Optim. Calc. Var., 25(15), 2019 (pdf on HAL-server).