International conferences
24) Miyamoto, K., Proactive metacognitive judgement in humans and monkeys. Japanese Neuroscience society, 4S03m-01, 2020.
23) Miyamoto, K., Trudel, N., Wittmann, M.K., Rushworth, M.F. Prospective metacognitive matching between subjective and environmental uncertainties in the frontal cortex. 12th FENS forum of neuroscience, 2020.
22) Saito, M., Miyamoto, K., Murakami, I., Spot illumination within the blind spot affects the absolute threshold for light in a normal region of the visual field. Vision Sciences Society, 2020.
21) Miyamoto, K., Setsuie, R., Osada, R., Miyashita, Y. Causally essential neural network for performing metacognitive judgement on experience and ignorance in primates. Society for Neuroscience, No. 273.03, 2018.
20) Miyamoto, K., Setsuie, R., Osada, R., Miyashita, Y. Causal role of the frontopolar cortex for metacognitive judgement on non-experienced events in primates. 2O-03a1-4, 2018.
19) Saito, M., Miyamoto, K., Uchiyama, Y., and Murakami, I. Opposite effects of blue light inside and outside the blind spot on the brightness at a remote location. Japanese Neuroscience society, 1P-194, 2018.
18) Miyamoto, K., Setsuie, R., Osada, R., Miyashita, Y. Localisation and reversible silencing of metacognition networks for experienced and non-experienced events in primates. 11th FENS forum of neuroscience, No.18-1284, 2018.
17) Saito, M., Miyamoto, K., Uchiyama, Y., and Murakami, I. Light inside the natural blind spot enhances pupillary light reflex and reduces the brightness of a stimulus outside the blind spot. Japanese Neuroscience society, 1P-122, 2017.
16) Setsuie, R., Tamura, K., Takeda, M., Miyamoto, K., and Miyashita, Y. ArchT-mediated optogenetic inhibition in vivo by red-shifted off-peak 594 nm light compared with that by on-peak 532 nm light. Japanese Neuroscience society, 3O-09a2-3, 2017.
15) Saito, M., Miyamoto, K., Uchiyama, Y., and Murakami, I. Brightness reduction in parafoveal stimuli in the simultaneous presence of light inside the natural blind spot. Vision Sciences Society, No.43.3012, 2017.
14) Setsuie, R., Tamura, K., Takeda, M., Miyamoto, K., and Miyashita, Y. Efficient ArchT-mediated optogenetic inhibition by red-shifted off-peak 594-nm light In vivo. Society for Neuroscience, No. 92.26, 2016.
13) Osada, T., Adachi, Y., Miyamoto, K., Jimura, K., Setsuie, R., Watanabe, T., and Miyashita, Y. Hierarchical prefrontal network arising from frontal pole area 10 during contextual memory retrieval in macaques. Japanese Neuroscience society. O1-G-1-3, 2016.
12) Osada T., Adachi, Y., Miyamoto, K., Jimura, K., Setsuie, R., Watanabe, T., and Miyashita, Y. Hub-centric prefrontal network predicts lesion-effective site for contextual memory in macaques. Society for Neuroscience, No. 527.06, 2015.
11) Miyamoto, K., Adachi, Y., Osada, T., Watanabe, T., Setsuie R., Kimura, H.M., Watanabe, T., Miyashita, Y. Dissociable memory formation processes within the macaque medial temporal lobe. Society for Neuroscience, No. 824.08, 2014.
10) Miyamoto, K., Adachi, Y., Osada, T., Watanabe, T., Kimura, H.M., Setsuie, R., Watanabe, T., and Miyashita, Y. Dissociable activity patterns in the macaque medial temporal lobe during memory encoding predict subsequent recognition performance. Japanese Neuroscience society. O3-H-2-2, 2014.
9) Miyamoto, K., Osada, T., Adachi, Y., Matsui, T., Kimura, H.M., Watanabe, T., Setsuie, R. and Miyashita, Y. Neural correlates of primacy and recency effects in macaque memory retrieval network. Society for Neuroscience, No. 572.13, 2013.
8) Miyamoto, K., Osada, T., Adachi, Y., Matsui, T., Kimura, H.M., Watanabe, T., Setsuie, R. and Miyashita, Y. Modular structures within macaque memory retrieval network implement functional differentiation during serial probe recognition task. Japanese Neuroscience society. O2-8-6-1, 2013.
7) Miyamoto, K., Osada, T., Adachi, Y., Matsui, T., Kimura, H.M., Watanabe, T., and Miyashita, Y. Memory retrieval-related fMRI activity in the macaque posterior parietal cortex. Japanese Neuroscience society. O3-D-37-1, 2012.
6) Adachi, Y., Osada, T., Sporns, O., Watanabe, T., Matsui, T., Miyamoto, K., Watanabe, T., and Miyashita, Y. Effects of network properties of directed anatomical connections on functional connectivity between macaque cortical areas. Society for Neuroscience, No. 531.06, 2011.
5) Osada, T., Molcard, A.J., Matsuo, T., Kawasaki, K., Adachi, Y., Miyamoto, K., Watanabe, T., Hasegawa, I., and Miyashita, Y. Intrasulcal ECoG approach to cortico-cortical connectivity using electrical stimulation-induced evoked potentials in macaques. Japanese Neuroscience society, 2011.
4) Adachi, Y., Osada, T., Sporns, O., Watanabe, T., Matsui, T., Miyamoto, K., Watanabe, T., and Miyashita, Y. Role of directionality of axonal projections in shaping functional connectivity between macaque cortical areas. Japanese Neuroscience society, 2011.
3) Miyamoto, K. and Murakami, I. The relationship between perceptual filling-in at the blind spot and short-latency pupillary light reflex. Society for Neuroscience, No. 811.9, 2008.
2) Miyamoto, K. and Murakami, I. Perceptual filling-in at the human blind spot influences pupillary light reflex. Japanese Neuroscience society, 2008.
1) Miyamoto, K. and Murakami, I. Perceptual filling-in on a natural blind spot influences pupillary light reflex. Vision Sciences Society, 2008.
Seminar talks
2) Miyamoto, K. and Murakami I, Enhancement of pupillary responses by light inside the blind spot. Prof. Semir Zeki Welcome seminar organised by Prof. Kawabata @ Keio University (Tokyo, Japan), 26th Oct. 2015.
1) Miyamoto, K. Dissociable recognition processes in memory encoding and retrieval networks: task- and connectivity-based fMRI of behaving macaque monkeys. Research seminar @ Department of Experimental Psychology, University of Oxford (Oxford, UK), 21st Nov. 2014.