This webpage is created for EDUC 5324 - Integrating Technology Into Education Course.
Helicopters is a National event in which students compete to build a balsa wood helicopter powered by a rubber band motor that has the longest flight time possible.
There are some commonly used terms that are useful when describing helicopters.
A simple design you can build is the Wright Bat Flier.
It is important to emphasize that you cannot use commercially available propellers, as previously stated. This is to preserve the true spirit of Science Olympiad--the engineering creativity of students. You may, however, use a kit as long as there are no pre-built parts (also make sure they meet the dimensional requirements of the rules). Don't panic--take time to draw up plans and purchase the materials you need as quickly as possible. At times homemade helicopters can far outperform kit-built models.
You are allowed to use wood, paper, string, wire . . . basically anything you can think of.
Helicopter bodies should be simple and easy to repair if damaged. For the body use wood that is as light as you can get without being brittle; balsa usually works. The top of the helicopter body should be constructed out of stronger wood than the rest of the helicopter frame because it will be under immense strain during flight (balsa which is denser or has larger dimensions may work). Make sure it is thick enough to drill a hole through. This is where the motor hook will be attached.
Pictured at right is a simple but effective body design found at most helicopter competitions.
There are three common designs, each with its own benefits and issues.
The rotors will be attached to the unfixed motor hook by a shaft in the middle. Often times the wire (paper clips work nicely for this purpose and they are quite pliable) is bent or glued around the shaft that connects the rotors.
When you glue the joints together, USE CA GLUE (not gorilla glue, which is far heavier and also takes longer to dry)! The helicopter will be taking some rough falls and you don't want it to get destroyed every time you test fly it! In addition, super glue dries somewhat slowly and it can be hard to hold in place while you glue joints. Buy CA glue accelerator from your local hobby shop. Apply it on wet super glue and it instantly sets. This is essential to achieving a perfect angle when gluing.
There are many different approaches to building helicopter rotors, but all successful designs have a few things in common:
Note: This step-by-step guide was written by Jeff Anderson to aid those attempting their first helicopter. It provides a process for building the rotors of a simple co-axial helicopter. Dimensions are a good starting point, but are definitely not ideal and will need to be altered to suit your individual helicopter.
"The conventional solution is a dual rotor copter; both rotors mounted coaxially and counter rotating. One is attached firmly to the motor stick; the other rotates free on a wire shaft. In flight, BOTH turn in opposite direction as one end of the motor torques on the 'free' rotor, and the other end torques on the 'fixed' rotor attached to the motor shaft.
Let’s start with the 'fixed' rotor.
• We'll start with the axis of the rotor which is the motor stick itself. It should be about 12 inches long and weigh about 1.5 gm.
• Select two spar sticks for the rotor. These are long straight stiff pieces of wood. Just fewer than 40 cm long, probably 1/16 by 1/16 and weighing 0.3 to 0.4 gm. These pieces are key, select them carefully.
• Now, glue the first spar to the rotor, oh say 2 inches down from what will be the top of the motor stick. Glue it so it is centered on the motor stick, opposite side from the rubber band. Make sure it is SQUARE to the motor stick. A jig is handy here. Don't try to do this free hand. You won't be accurate enough.
• Now, measure up the motor stick, say 1 1/4 inches. You are going to attach the second spar here, again centered on the spar. BUT, you have to rotate this spar around the axis so the tips of the spars are separated about say 4 inches when looking down along the length of the motor stick. A little trig gives me about 28 degrees of angle rotation. And that's clockwise looking from the top of the stick, by convention. It only matters because the free rotor you build next MUST rotate the opposite way. As long as you wind correct, either can work. O Now, to attach the spar at an angle with good glue joint, you'll need to sand a shallow angled notch into the motor stick on the same side as the first spar at the marked location. The angle is of course 28 degrees in the direction you want. Glue the second spar into this notch, again SQUARE to the motor stick, but angled to the first spar when looking from the top. A jig of some kind is handy.
• The next step is to put some ribs between the spars to define a twisted surface to put tissue or Mylar covering on. Measure and mark along each spar 5, 10, and 15 cm from the motor stick. Using light balsa cut and fit a rib between the spars at each of these locations and at the spar tips. Make sure you don't cause the spars to bend!! These ribs can be straight, or have a slight curve like a wing. This is finicky hand work, cut, fit and reject if not perfect. Once you are sure the rib is right, glue it in place. Of course a jig is handy, be creative.
• Now, cover the rotor from the 5 cm rib out to the tip. The inner 5 cm theoretically adds thrust, but as a practical matter, most of the work is done at the tip and the inner area just adds drag and weight. Covering is just like covering a Wright Stuff wing, except the surface is curved in three dimensions. It can be done in one piece, but treating each section on its own might work better.
• Voila' you have a rotor.
The 'free' rotor is almost exactly the same except for the axis. For the free rotor the axis is the shaft (think prop shaft wire on a Wright Stuff plane). The spars are selected the same and are just as critical here. You glue them to a very long prop shaft (rubber hook at one end, locking hook at the other). Same spacing, same rotation difference, but in the OPPOSITE direction as the fixed rotor. It’s a little tough gluing to the wire securely, so you may want to cut two 1/16 square spacers about 1 ¼ inches long to slab alongside the wire and glue between the two spars. You also want to glue the locking hook to the top spar VERY securely. Everything else is the same.
Note, the dimensions I gave are approximate!! They should give you a good flying copter if you keep the overall weight to 4.0 gm. MAX. The ideal is for YOU to determine. But don't be too surprised if you find the best thrust is with the lower rotor at a slight higher pitch then the upper! And maybe a three or four bladed rotor is better. Only testing will tell."
Matching rubber width and torque to rotor pitch is the key to being successful in this event. Rubber for indoor-duration models comes in many different widths that must be contemplated before purchasing. For example, if your rotors have a high pitch, then it would be wise to use a thicker rubber. However if your rotors have a low/shallow pitch, then you will be able to use a thinner rubber.
Thicker rubber will not take as many winds, but will provide much more power. Thinner rubber will store many more winds, but will release the energy slowly and at much less power.
Also, it would be wise to lubricate your rubberbands before flying them. You will able to place more winds into the rubber, and it will not cut itself over multiple uses. Do not use WD-40 for this, as it will degrade the rubber. A popular lubricant used by many is ArmorAll lube.
Simply spray the lubricant onto the rubber band, and rub it gently between your palms. Store in a plastic bag, to prevent the rubber from drying out.
Buy a winder or wind manually. Winding manually takes an agonizingly long time, so winders are worth the money. Do not buy a battery-powered winder that needs to be put directly on the rotor! Use a hand-crank winder with a 10:1 or 15:1 ratio.
Additionally, a good single person winding process is to construct a winding jig. It consists of a plank of wood with 2 perpendicular wood peices. In one of the perpendicular peices, drill a hole and put in a hook that can hold the O-ring. On the other end cut a hole so the winder and fit in while winding. The distance between hooks of the hook and winder should be equal to the length of the motor stick.
Data for 10 test flights is required before the competition for each helicopter that you check in. Get permission to go to your school gym and test if there are not obstructions on the roof. Any room without obstructions is preferred over high ceilings with lots of obstructions Fans, beams, contact with the ceiling, and furniture can negatively affect your helicopter's flight time. DO NOT TEST IT OUTSIDE.
If a suitable testing location is not available, or you want to test just rotor efficiency, consider building a static testing jig. Place the helicopter in the jig, place the jig on a scale, and zero it out with the weight of the helicopter too. Wind up the rubber, and let the helicopter spin. The negative amount the scale displays is the comparitive amount of lift the rotors generate.
6 data parameters are required for each test flight. 3 are required, 3 are any that you choose.
The required data parameters for each flight are:
Some suggested parameters are:
You can pick three of the above, or any of your own. Feel free to add your own ideas to this list.
Only the better flight (out of the 2) will be scored. You will have eight minutes to fly your helicopter(s) once or twice. If that time expires and you still have not completed a second flight, you will not get to test either of your helicopters again.
Bonuses
10% of the score added on for every single bladed rotor. Maximum of 30% can be added.
Penalties
Main body of a typical helicopter. The motor hook on the left is fixed to the body (i.e it cannot move on its own), while the one on the right rotates with the rotors. In the center is the rubber band motor.
2010 National Tournament Trial Events
Division B: Helicopter · Model This · Optics | Division C: Helicopter · Protein Modeling · Sumo Bots