Nodal counts for the Robin problem on Lipschitz domains. Katie Gittins, Asma Hassannezhad, Corentin Léna, David Sher. Accepted for publication in Pure and Applied Functional Analysis. Preprint arXiv:2411.11427v2 [math.SP] (4 April 2025).
A note on the magnetic Steklov operator on functions. Tirumala Chakradhar, Katie Gittins, Georges Habib, Norbert Peyerimhoff. Mathematika, 71(4), Article e70037. https://doi.org/10.1112/mtk.70037.
Qualitative properties of the heat content. M. van den Berg, K. Gittins. Bulletin of the London Mathematical Society. 57(8) (2025) 2239-2252. https://doi.org/10.1112/blms.70091.
Spectral ratios and gaps for Steklov eigenvalues of balls with revolution-type metrics. Jade Brisson, Bruno Colbois, Katie Gittins. Canadian Mathematical Bulletin, 68(2) (2025) 492-511. https://doi.org/10.4153/S0008439524000778.
Do the Hodge spectra distinguish orbifolds from manifolds? Part 2. Katie Gittins, Carolyn Gordon, Ingrid Membrillo Solis, Juan Pablo Rossetti, Mary Sandoval, Elizabeth Stanhope. Accepted for publication in the Michigan Mathematical Journal. Preprint arXiv:2311.00337 [math.DG] (4 January 2024).
Eigenvalue estimates for the magnetic Hodge Laplacian on differential forms. M. Egidi, K. Gittins, G. Habib, N. Peyerimhoff. J. Spectr. Theory 13 (2023), no. 4, pp. 1297–1343. DOI 10.4171/JST/480.
Heat flow in polygons with reflecting edges. S. Farrington, K. Gittins. Integr. Equ. Oper. Theory 95, 27 (2023). https://doi.org/10.1007/s00020-023-02749-0.
Do the Hodge spectra distinguish orbifolds from manifolds? Part 1. Katie Gittins, Carolyn Gordon, Magda Khalile, Ingrid Membrillo Solis, Mary Sandoval, Elizabeth Stanhope. Michigan Math. J. 74(3) (2024), 571-598. DOI: 10.1307/mmj/20216126.
Upper bounds for Steklov eigenvalues of submanifolds in Euclidean space via the intersection index. B. Colbois, K. Gittins. Differential Geometry and its Applications, 78 (2021), https://doi.org/10.1016/j.difgeo.2021.101777.
Courant-sharp Robin eigenvalues for the square: the case of negative Robin parameter. K. Gittins, B. Helffer. Asymptotic Analysis, 124 (2021), 69–107, http://dx.doi.org/10.3233/ASY-201642.
Heat flow from polygons. M. van den Berg, P. Gilkey, K. Gittins. Potential Anal. 53 (2020), 1043-1062. https://doi.org/10.1007/s11118-019-09797-5.
Courant-sharp Robin eigenvalues for the square: the case with small Robin parameter. K. Gittins, B. Helffer. Ann. Math. Québec, 44 (2020), 91-123. https://doi.org/10.1007/s40316-019-00120-7.
Upper bounds for Courant-sharp Neumann and Robin eigenvalues. K. Gittins, C. Léna. Bull. Soc. Math. France. 148 (1), (2020), 99-132.
Courant-sharp Robin eigenvalues for the square and other planar domains. K. Gittins, B. Helffer. Port. Math. 76 (2019), 57-100. doi: 10.4171/PM/2027.
Steklov eigenvalues of submanifolds with prescribed boundary in Euclidean space. B. Colbois, A. Girouard, K. Gittins. J Geom Anal (2019) 29: 1811. https://doi.org/10.1007/s12220-018-0063-x
Asymptotic behaviour of cuboids optimising Laplacian eigenvalues. K. Gittins, S. Larson. Integr. Equ. Oper. Theory, 89 (2017), 607-629.
Minimizing Dirichlet eigenvalues on cuboids of unit measure. M. van den Berg, K. Gittins. Mathematika, 63 (2017), 469-482.
On the number of Courant-sharp Dirichlet eigenvalues. M. van den Berg, K. Gittins. Journal of Spectral Theory, 6 (2016), 735-745.
Maximising Neumann eigenvalues on rectangles. M. van den Berg, D. Bucur, K. Gittins. Bulletin of the London Mathematical Society, 48 (2016), 877-894.
On the heat content of a polygon. M. van den Berg, K. Gittins. J. Geom. Anal. 26 (2016), 2231–2264
Uniform bounds for the heat content of open sets in Euclidean space. M. van den Berg, K. Gittins. Differ. Geom. Appl. 40 (2015), 67-85.
Some spectral applications of McMullen's Hausdorff dimension algorithm. K. Gittins, N. Peyerimhoff, M. Stoiciu and D. Wirosoetisno. Conform. Geom. Dyn. 16 (2012), 184-203.
Survey article:
Courant-sharp Robin eigenvalues for the square: a review. Rendiconti Sem. Mat. Univ. Pol. Torino Vol. 77, 2 (2019), 49 – 66.