Statistician
email: justin.chown@gmail.com
2014 - PhD, Statistics, Texas A&M University
2011 - MS, Statistics, Texas A&M University
2009 - BS, Mathematics, Boise State University
T. Kutta, N. Bissantz, J. Chown and H. Dette (2019). The empirical process of residuals from an inverse regression. Mathematical Methods of Statistics 28, 104-126. DOI: 10.3103/S1066530719020029. Preprint at RUB: erg6-4.
J. Chown, N. Bissantz and H. Dette (2019). Goodness-of-fit testing the error distribution in multivariate indirect regression. Electronic Journal of Statistics 13, 2658-2685. DOI: 10.1214/19-EJS1591. Preprint on arXiv: 1812.02409.
J. Chown, C. Heuchenne and I. Van Keilegom (2019). The nonparametric location-scale mixture cure model. TEST. DOI: 10.1007/s11749-019-00698-8. Preprint on arXiv: 1803.03512.
N. Bissantz, J. Chown and H. Dette (2016+). Regularization parameter selection in indirect regression by residual based bootstrap. To appear: Statistica Sinica. Preprint on arXiv: 1610.08663.
J. Chown and U.U. Müller (2018). Detecting heteroskedasticity in nonparametric regression using weighted empirical processes. Journal of the Royal Statistical Society, Series B, 80, 951-974. DOI: 10.1111/rssb.12282. Preprint on arXiv: 1610.09139.
See the corrigenda for a correction note on this work.
J. Chown (2016). Efficient estimation of the error distribution function in heteroskedastic nonparametric regression with missing data. Statistics and Probability Letters 117, 31-39. DOI:10.1016/j.spl.2016.04.009. Preprint on arXiv: 1610.08768.
See the corrigenda for a correction note on this work.
J. Chown and U.U. Müller (2013). Efficiently estimating the error distribution in nonparametric regression with responses missing at random. Journal of Nonparametric Statistics 25, 665–677. DOI:10.1080/10485252.2013.795222. Preprint on arXiv: 1610.08360.
A recent resume summarizing my educational and professional activities.