2018
15> Quantum control for high-fidelity multi-qubit gates.
R. J. Spiteri, M. Schmidt, J. Ghosh, E. Zahedinejad and B. C. Sanders.
New Journal of Physics, 20, 113009 (2018) [arXiv link][PDF]
14> Measurement-free implementations of small-scale surface codes for quantum-dot qubits.
H. E. Ercan, J. Ghosh, D. Crow, V. N. Premakumar, R. Joynt, M. Friesen and S. N. Coppersmith.
Physical Review A, 97, 012318 (2018) [arXiv link][PDF]
2017
13> Pulse sequences for suppressing leakage in single-qubit gate operations.
J. Ghosh, S. N. Coppersmith and M. Friesen.
Physical Review B [Rapid Communication], 95, 241307(R) (2017) [arXiv link][PDF]
12> A decoherence-free subspace in a charge quadrupole qubit.
M. Friesen, J. Ghosh, M. Eriksson and S. N. Coppersmith.
Nature Communications, 8, 15923 (2017) [arXiv link][PDF][Supplementary material])
2016
11> Designing High-Fidelity Single-Shot Three-Qubit Gates: A Machine Learning Approach.
E. Zahedinejad, J. Ghosh and B. C. Sanders.
Physical Review Applied, 6, 054005 (2016) [arXiv link][PDF]
10> Quantum simulation of macro and micro quantum phase transition from paramagnetism to frustrated magnetism with a superconducting circuit.
J. Ghosh and B. C. Sanders.
New Journal of Physics, 18, 033015 (2016) [arXiv link][PDF]
2015
9> High-Fidelity Single-Shot Toffoli Gate via Quantum Control.
E. Zahedinejad, J. Ghosh and B. C. Sanders.
Physical Review Letters, 114, 200502 (2015) [arXiv link][PDF]
8> Leakage-resilient approach to fault-tolerant quantum computing with superconducting elements.
J. Ghosh and A. G. Fowler.
Physical Review A [Rapid Communication], 91, 020302(R) (2015) [arXiv link][PDF]
2014
7> Emulating quantum state transfer through a spin-1 chain on a one-dimensional lattice of superconducting qutrits.
J. Ghosh.
Physical Review A, 90, 062318 (2014) [arXiv link][PDF]
6> Simulating Anderson localization via a quantum walk on a one-dimensional lattice of superconducting qubits.
J. Ghosh.
Physical Review A, 89, 022309 (2014) [arXiv link][PDF]
2013
5> Understanding the effects of leakage in superconducting quantum error detection circuits.
J. Ghosh, A. G. Fowler, J. M. Martinis and M. R. Geller.
Physical Review A, 88, 062329 (2013) [arXiv link][PDF]
♕ Fault Tolerant Quantum Computation with Superconducting Elements: High-fidelity Gate Design and Topological Error Correction.
J. Ghosh, PhD Thesis. [UGA electronic database link][PDF][Talk]
4> High-fidelity controlled-σZ gate for resonator-based superconducting quantum computers.
J. Ghosh, A. Galiautdinov, Z. Zhou, A. N. Korotkov, J. M. Martinis and M. R. Geller.
Physical Review A, 87, 022309 (2013) [arXiv link][PDF]
2012
3> Surface code with decoherence: An analysis of three superconducting architectures.
J. Ghosh, A. G. Fowler and M. R. Geller.
Physical Review A, 86, 062318 (2012) [arXiv link][PDF]
2> Controlled-NOT logic gate for phase qubits based on conditional spectroscopy.
J. Ghosh and M. R. Geller.
Quantum Information Processing, Springer, Netherlands, 11, 6, 1349-57 (2012) [arXiv link][PDF]
2011
✍ A note on the measures of process fidelity for non-unitary quantum operations.
J. Ghosh, Unpublished note. [arXiv link]
2010
1> Controlled-NOT gate with weakly coupled qubits: Dependence of fidelity on the form of interaction.
J. Ghosh and M. R. Geller.
Physical Review A, 81, 052340 (2010) [arXiv link][PDF]
(Selected for Virtual Journal of Quantum Information, Volume 10, Issue 6)