Book Chapters:
B1) R. Herzog, S. Schmidt, M. Herrmann, J. Vidal-Nunez, (2022) Chapter in SPP-1962 Program Special Issue, Non-smooth and complementarity-based distributed parameter systems, Editor: M. Hintermueller et al., Publisher: International Series of Numerical Mathematics, Springer Nature Switzerland AG(2021) (https://doi.org/10.1007/978-3-030-79393-7 )
Publications in Journals:
A18) L. Baumgärtner, R. Bergmann, R. Herzog, S. Schmidt, J. Vidal, M. Weiss, (2025) Mesh denoising and inpainting using the total variation of the normal and a shape Newton approach, SIAM Journal on Scientific Computing (SISC) 47 (1), A300-A324, DOI: https://doi.org/10.1137/24M1646121 .
A17) M.D. Fajardo, J. Vidal, (2024) Lagrange duality on DC evenly convex optimization problems via a generalized conjugation scheme, Optimization Letters (OPTL), https://doi.org/10.1007/s11590-024-02167-0.
A16) M.D. Fajardo, J. Vidal, (2023) On Fenchel c-conjugate dual problems for DC optimization: characterizing weak, strong and stable strong duality, Optimization 73 (8), 2473-2500, DOI: https://doi.org/10.1080/02331934.2023.2230988.
A15) L. Baumgärtner, R. Bergmann, R. Herzog, S. Schmidt, J. Vidal, (2023) Total generalized variation for piecewise constant functions with applications in imaging, SIAM Journal on Imaging Sciences (SIIMS) 16 (1), 313-339, DOI: doi.org/10.1137/22M1505281.
A14) M.D. Fajardo, J. Vidal, (2022) On subdifferentials via a generalized conjugation scheme: an application to DC problems and optimality conditions, Set-Valued and Variational Analysis 30, 1313-1331, DOI: https://doi.org/10.1007/s11228-022-00644-1 .
A13) R. Bergmann, R. Herzog, D. Tenbrinck, M. Silva-Louzeiro, J. Vidal, (2021) Fenchel Duality Theory and a Primal-Dual Algorithm on Riemannian Manifolds, Foundations of Computational Mathematics 21, 1465-1504, DOI: https://doi.org/10.1007/s10208-020-09486-5.
A12) M.D. Fajardo, S.M. Grad, J. Vidal, (2021) New Duality Results for Evenly Convex Optimization Problems, Optimization: A journal of Mathematical Programming and Operations Research, 70 (9), 1837-1858, DOI: doi.org/10.1080/02331934.2020.1756287
A11) M.D. Fajardo, J. Vidal, (2020) E'-convex Sets and Functions: Properties and Characterizations, Vietnam Journal of Mathematics, 48 (3), 407-423, DOI:doi.org/10.1007/s10013-020-00414-2
A10) R. Bergmann, M. Herrmann, R. Herzog, S. Schmidt, J. Vidal, (2020) Discrete Total Variation of the Normal Vector Field as Shape Prior with Applications in Geometric Inverse Problems, Inverse Problems (IP), 35 (5) 20pp, DOI:doi.org/10.1088/1361-6420/ab6d5c
A9) R. Bergmann, M. Herrmann, R. Herzog, S. Schmidt, J. Vidal, (2020) Total Variation of the Normal Vector Field as Shape Prior, Inverse Problems (IP), 36 (5) 21pp, DOI:doi.org/10.1088/1361-6420/ab6d5b
A8) R. Bergmann, M. Herrmann, R. Herzog, S. Schmidt, J. Vidal, (2019) Geometry Processing Problems Using the Total Variation of the Normal Vector Field, Proceedings in Applied Mathematics and Mechanics - 90th GAMM Annual Meeting.
A7) M. Herrmann, R. Herzog, S. Schmidt,, J. Vidal, G. Wachmuth, (2018) Discrete Total Variation with Finite Elements and Applications to Imaging, Journal of Mathematical Imaging and Vision (JMIV), 61 (4) 411-431, DOI: https://doi.org/10.1007/s10851-018-0852-7.
A6) M. Herrmann, R. Herzog, H. Kroener, S. Schmidt, J. Vidal, (2018) Analysis and Interior Point Approach for Total Variation Image Reconstruction, SIAM Journal on Imaging Sciences (SIIMS), 11 (2) 889-922, DOI:doi.org/10.1137/17M1128022
A5) M.D. Fajardo, J. Vidal, (2018) Necessary and Sufficient Conditions for Strong Fenchel–Lagrange Duality via a Coupling Conjugation Scheme, Journal of Optimimization Theory and Applications (JOTA), 176 (1), 57-73, DOI:doi.org/10.1007/s10957-017-1209-x
A4) A. Seeger, J. Vidal, (2017) Measuring Centrality and Dispersion in Directional Datasets: the Ellipsoidal Cone Covering Approach, Journal of Global Optimization (JOGO), 68 (2), 279-306, DOI:doi.org/10.1007/s10898-016-0464-y
A3) M.D. Fajardo, J. Vidal, (2017) A Comparison of Alternative c-Conjugate Dual Problems in Infinite Convex Optimization, Optimization: A Journal of Mathematical Programming and Operations Research, 66 (5): 705-722, DOI:doi.org/10.1080/02331934.2017.1295046
A2) M.D. Fajardo, J. Vidal, (2016) Stable Strong Fenchel and Lagrange Duality for Evenly Convex Optimization Problems, Optimization: A Journal of Mathematical Programming and Operations Research, 65 (9): 1675-1691, DOI:doi.org/10.1080/02331934.2016.1167207
A1) M.D. Fajardo, M.M.L. Rodríguez, J. Vidal, (2016) Lagrange Duality for Evenly Convex Optimization Problems, Journal of Optimization Theory and Applications (JOTA), 168 (1): 109-128, DOI:doi.org/10.1007/s10957-015-0775-z