Publications

Articles

  1. J. Narski, Fast Kinetic Scheme : efficient MPI parallelization strategy for 3D Boltzmann equation, submitted, preprint:  arXiv:1701.01608

  2. G. Dimarco, R. Loubère, J. Narski, T. Rey, An efficient numerical method for solving the Boltzmann equation in multidimensions, submitted, preprint:  arXiv:1608.08009

  3. A. Lozinski, J. Narski, C. Negulescu, Numerical analysis of an asymptotic-preserving scheme for anisotropic elliptic equations, submitted, preprint:  arXiv:1507.00879

  4. J. Fehrenbach, J. Narski, J. Hua, S. Lemercier, A. Jelic, C. Appert-Rolland, S. Donikian, J. Pettré, P. Degond, Time-delayed Follow-the-Leader model for pedestrians walking in line, Networks and Heterogeneous Media, 10 (2015), 579-608., preprint: arXiv:1412.7537

  5. G. Dimarco, R. Loubere, J. Narski, Towards an ultra efficient kinetic scheme. Part III: High performance computing, J. Comput. Phys. (2015), Vol. 284, 22-39

  6. B. P. Muljadi, J. Narski, A. Lozinski, P. Degond, Non-Conforming Multiscale Finite Element Method for Stokes Flows in Heterogeneous Media. Part I: Methodologies and Numerical ExperimentsMultiscale Modelling and Simulation, 13 (2015) pp. 1146–1172, preprint: arXiv:1404.2837

  7. P. Degond, A. Lozinski, B. P. Muljadi, J. Narski, Crouzeix-Raviart MsFEM with Bubble Functions for Diffusion and Advection-Diffusion in Perforated Media Communications in Computational Physics, 17 (2015), pp. 887-907, preprint: arXiv:1310.8639

  8. J. Narski, M. Ottaviani, Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary anisotropy direction, Computer Physics Communications 185 (2014) pp. 3189-3203, preprint:  arXiv:1303.5219

  9. J. Narski, Anisotropic finite elements with high aspect ratio for an Asymptotic Preserving method for highly anisotropic elliptic equation, submitted, preprint:  arXiv:1302.4269

  10. A. Lozinski, J. Narski, C. Negulescu, Highly anisotropic temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time, M2AN 48 (2014) 1701–1724, preprint:  arXiv:1203.6739
  11. P. Degond, A. Lozinski, J. Narski, C. Negulescu, An Asymptotic-Preserving method for highly anisotropic elliptic equations based on a micro-macro decomposition, J. Comput. Phys. (2012), Vol. 231(7), 2724-2740, preprint:  arXix:1102.0904

  12. P. Degond, F. Deluzet, A. Lozinski, J. Narski, C. Negulescu, Duality-based Asymptotic-Preserving method for highly anisotropic diffusion equation, Commun. Math. Sci. (2012), Vol. 10(1), 1-31, preprint:  arXiv:1008.3405v1

  13. J. Narski, M. Picasso, Adaptive finite elements with high aspect ratio for dendritic growth of a binary alloy including fluid flow induced by shrinkage, CMAME (2007) 196, 3562-3576, article

  14. J. Narski, M. Picasso, Adaptive 3D finite elements with high aspect ratio for dendritic growth of a binary alloy including fluid flow induced by shrinkage, Fluid Dyn. Mater. Proc. (2007) 3(1), 49-64, article

Proceedings

  1. G. Dimarco, J. Narski, Hybrid Monte Carlo Schemes for Plasma Simulations, AIP Conf. Proc., Vol. 1389, 1130-1133 (2011)

  2. P. Degond, F. Deluzet, D. Maldarella, J. Narski, C. Negulescu, M. Parisot, Hybrid model for the Coupling of an Asymptotic Preserving scheme with the Asymptotic Limit model: The One Dimensional Case, ESAIM: Proc. 32, 23-30 (2011) article

  3. J. Narski, M. Picasso, Adaptive finite elements with high aspect ratio for dendritic growth of a binary alloy including fluid flow induced by shrinkage, Int. Ser. Numerical Mathematics, Vol. 154, 327-337, Birkhauser, 2006, article