Articles
 C. Yang, F. Deluzet, J. Narski, On the numerical resolution of anisotropic equations with high order di.erential operators: application to tokamak plasma physics, submitted
 F. Deluzet, J. Narski, A two field iterated AsymptoticPreserving method for highly anisotropic elliptic equations, submitted
 J. Narski, Fast Kinetic Scheme : efficient MPI parallelization strategy for 3D Boltzmann equation, accepted for publication in CiCP, preprint: arXiv:1701.01608

G. Dimarco, R. Loubère, J. Narski, T. Rey, An efficient numerical method for solving the Boltzmann equation in multidimensions, J. Comput. Phys. (2018), Vol. 353, 4681, preprint: arXiv:1608.08009

A. Lozinski, J. Narski, C. Negulescu, Numerical analysis of an asymptoticpreserving scheme for anisotropic elliptic equations, submitted, preprint: arXiv:1507.00879

J. Fehrenbach, J. Narski, J. Hua, S. Lemercier, A. Jelic, C.
AppertRolland, S. Donikian, J. Pettré, P. Degond, Timedelayed
FollowtheLeader model for pedestrians walking in line, Networks and Heterogeneous Media, 10 (2015), 579608., preprint: arXiv:1412.7537

G. Dimarco, R. Loubere, J. Narski, Towards an ultra efficient kinetic scheme. Part III: High performance computing, J. Comput. Phys. (2015), Vol. 284, 2239

B. P. Muljadi, J. Narski, A. Lozinski, P. Degond, NonConforming Multiscale Finite Element Method for Stokes Flows in Heterogeneous Media. Part I: Methodologies and Numerical Experiments, Multiscale Modelling and Simulation, 13 (2015) pp. 1146–1172, preprint: arXiv:1404.2837

P. Degond, A. Lozinski, B. P. Muljadi, J. Narski, CrouzeixRaviart MsFEM with Bubble Functions for Diffusion and AdvectionDiffusion in Perforated Media, Communications in Computational Physics, 17 (2015), pp. 887907, preprint: arXiv:1310.8639

J. Narski, M. Ottaviani, Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary anisotropy direction, Computer Physics Communications 185 (2014)
pp. 31893203, preprint: arXiv:1303.5219
 A. Lozinski, J. Narski, C. Negulescu, Highly anisotropic temperature balance equation and its numerical solution using asymptoticpreserving schemes of second order in time, M2AN 48 (2014) 1701–1724, preprint: arXiv:1203.6739

P. Degond, A. Lozinski, J. Narski, C. Negulescu, An
AsymptoticPreserving method for highly anisotropic elliptic equations based on a micromacro decomposition, J. Comput. Phys. (2012), Vol. 231(7), 27242740, preprint: arXix:1102.0904

P. Degond, F. Deluzet, A. Lozinski, J. Narski, C. Negulescu, Dualitybased AsymptoticPreserving method for highly anisotropic diffusion equation, Commun. Math. Sci. (2012), Vol. 10(1), 131, preprint:
arXiv:1008.3405v1

J. Narski, M. Picasso, Adaptive finite elements with high aspect ratio for dendritic growth of a binary alloy including fluid flow induced by shrinkage, CMAME (2007) 196, 35623576, article

J. Narski, M. Picasso, Adaptive 3D finite elements with high aspect
ratio for dendritic growth of a binary alloy including fluid flow induced by shrinkage, Fluid Dyn. Mater. Proc. (2007) 3(1), 4964, article
Proceedings

G. Dimarco, J. Narski, Hybrid Monte Carlo Schemes for Plasma Simulations, AIP Conf. Proc., Vol. 1389, 11301133 (2011)

P. Degond, F. Deluzet, D. Maldarella, J. Narski, C. Negulescu, M. Parisot, Hybrid model for the Coupling of an Asymptotic Preserving scheme with the Asymptotic Limit model: The One Dimensional Case, ESAIM: Proc. 32, 2330 (2011) article

J. Narski, M. Picasso, Adaptive finite elements with high aspect ratio for dendritic growth of a binary alloy including fluid flow induced by shrinkage, Int. Ser. Numerical Mathematics, Vol. 154, 327337, Birkhauser, 2006, article

