感知器範例

數字溫度傳感器

#include "DallasTemperature.h" extern "C" { #include "WConstants.h" } DallasTemperature::DallasTemperature(OneWire* _oneWire) #if REQUIRESALARMS : _AlarmHandler(&defaultAlarmHandler) #endif { _wire = _oneWire; devices = 0; parasite = false; bitResolution = 9; waitForConversion = true; } // initialize the bus void DallasTemperature::begin(void) { DeviceAddress deviceAddress; _wire->reset_search(); devices = 0; // Reset the number of devices when we enumerate wire devices while (_wire->search(deviceAddress)) { if (validAddress(deviceAddress)) { if (!parasite && readPowerSupply(deviceAddress)) parasite = true; ScratchPad scratchPad; readScratchPad(deviceAddress, scratchPad); bitResolution = max(bitResolution, getResolution(deviceAddress)); devices++; } } } // returns the number of devices found on the bus uint8_t DallasTemperature::getDeviceCount(void) { return devices; } // returns true if address is valid bool DallasTemperature::validAddress(uint8_t* deviceAddress) { return (_wire->crc8(deviceAddress, 7) == deviceAddress[7]); } // finds an address at a given index on the bus // returns true if the device was found bool DallasTemperature::getAddress(uint8_t* deviceAddress, uint8_t index) { uint8_t depth = 0; _wire->reset_search(); while (depth <= index && _wire->search(deviceAddress)) { if (depth == index && validAddress(deviceAddress)) return true; depth++; } return false; } // attempt to determine if the device at the given address is connected to the bus bool DallasTemperature::isConnected(uint8_t* deviceAddress) { ScratchPad scratchPad; return isConnected(deviceAddress, scratchPad); } // attempt to determine if the device at the given address is connected to the bus // also allows for updating the read scratchpad bool DallasTemperature::isConnected(uint8_t* deviceAddress, uint8_t* scratchPad) { readScratchPad(deviceAddress, scratchPad); return (_wire->crc8(scratchPad, 8) == scratchPad[SCRATCHPAD_CRC]); } // read device's scratch pad void DallasTemperature::readScratchPad(uint8_t* deviceAddress, uint8_t* scratchPad) { // send the command _wire->reset(); _wire->select(deviceAddress); _wire->write(READSCRATCH); // TODO => collect all comments & use simple loop // byte 0: temperature LSB // byte 1: temperature MSB // byte 2: high alarm temp // byte 3: low alarm temp // byte 4: DS18S20: store for crc // DS18B20 & DS1822: configuration register // byte 5: internal use & crc // byte 6: DS18S20: COUNT_REMAIN // DS18B20 & DS1822: store for crc // byte 7: DS18S20: COUNT_PER_C // DS18B20 & DS1822: store for crc // byte 8: SCRATCHPAD_CRC // // for(int i=0; i<9; i++) // { // scratchPad[i] = _wire->read(); // } // read the response // byte 0: temperature LSB scratchPad[TEMP_LSB] = _wire->read(); // byte 1: temperature MSB scratchPad[TEMP_MSB] = _wire->read(); // byte 2: high alarm temp scratchPad[HIGH_ALARM_TEMP] = _wire->read(); // byte 3: low alarm temp scratchPad[LOW_ALARM_TEMP] = _wire->read(); // byte 4: // DS18S20: store for crc // DS18B20 & DS1822: configuration register scratchPad[CONFIGURATION] = _wire->read(); // byte 5: // internal use & crc scratchPad[INTERNAL_BYTE] = _wire->read(); // byte 6: // DS18S20: COUNT_REMAIN // DS18B20 & DS1822: store for crc scratchPad[COUNT_REMAIN] = _wire->read(); // byte 7: // DS18S20: COUNT_PER_C // DS18B20 & DS1822: store for crc scratchPad[COUNT_PER_C] = _wire->read(); // byte 8: // SCTRACHPAD_CRC scratchPad[SCRATCHPAD_CRC] = _wire->read(); _wire->reset(); } // writes device's scratch pad void DallasTemperature::writeScratchPad(uint8_t* deviceAddress, const uint8_t* scratchPad) { _wire->reset(); _wire->select(deviceAddress); _wire->write(WRITESCRATCH); _wire->write(scratchPad[HIGH_ALARM_TEMP]); // high alarm temp _wire->write(scratchPad[LOW_ALARM_TEMP]); // low alarm temp // DS18S20 does not use the configuration register if (deviceAddress[0] != DS18S20MODEL) _wire->write(scratchPad[CONFIGURATION]); // configuration _wire->reset(); // save the newly written values to eeprom _wire->write(COPYSCRATCH, parasite); if (parasite) delay(10); // 10ms delay _wire->reset(); } // reads the device's power requirements bool DallasTemperature::readPowerSupply(uint8_t* deviceAddress) { bool ret = false; _wire->reset(); _wire->select(deviceAddress); _wire->write(READPOWERSUPPLY); if (_wire->read_bit() == 0) ret = true; _wire->reset(); return ret; } // set resolution of all devices to 9, 10, 11, or 12 bits // if new resolution is out of range, it is constrained. void DallasTemperature::setResolution(uint8_t newResolution) { bitResolution = constrain(newResolution, 9, 12); DeviceAddress deviceAddress; for (int i=0; i<devices; i++) { getAddress(deviceAddress, i); setResolution(deviceAddress, bitResolution); } } // set resolution of a device to 9, 10, 11, or 12 bits // if new resolution is out of range, 9 bits is used. bool DallasTemperature::setResolution(uint8_t* deviceAddress, uint8_t newResolution) { ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) { // DS18S20 has a fixed 9-bit resolution if (deviceAddress[0] != DS18S20MODEL) { switch (newResolution) { case 12: scratchPad[CONFIGURATION] = TEMP_12_BIT; break; case 11: scratchPad[CONFIGURATION] = TEMP_11_BIT; break; case 10: scratchPad[CONFIGURATION] = TEMP_10_BIT; break; case 9: default: scratchPad[CONFIGURATION] = TEMP_9_BIT; break; } writeScratchPad(deviceAddress, scratchPad); } return true; // new value set } return false; } // returns the global resolution uint8_t DallasTemperature::getResolution() { return bitResolution; } // returns the current resolution of the device, 9-12 // returns 0 if device not found uint8_t DallasTemperature::getResolution(uint8_t* deviceAddress) { if (deviceAddress[0] == DS18S20MODEL) return 9; // this model has a fixed resolution ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) { switch (scratchPad[CONFIGURATION]) { case TEMP_12_BIT: return 12; break; // not needed ? case TEMP_11_BIT: return 11; break; case TEMP_10_BIT: return 10; break; case TEMP_9_BIT: return 9; break; } } return 0; } // sets the value of the waitForConversion flag // TRUE : function requestTemperature() etc returns when conversion is ready // FALSE: function requestTemperature() etc returns immediately (USE WITH CARE!!) // (1) programmer has to check if the needed delay has passed // (2) but the application can do meaningfull things in that time void DallasTemperature::setWaitForConversion(bool flag) { waitForConversion = flag; } // gets the value of the waitForConversion flag bool DallasTemperature::getWaitForConversion() { return waitForConversion; } // sends command for all devices on the bus to perform a temperature conversion void DallasTemperature::requestTemperatures() { _wire->reset(); _wire->skip(); _wire->write(STARTCONVO, parasite); // ASYNC mode? if (false == waitForConversion) return; switch (bitResolution) { case 9: delay(94); break; case 10: delay(188); break; case 11: delay(375); break; case 12: default: delay(750); break; } return; } // sends command for one device to perform a temperature by address // returns FALSE if device is disconnected // returns TRUE otherwise bool DallasTemperature::requestTemperaturesByAddress(uint8_t* deviceAddress) { // check device ScratchPad scratchPad; if (false == isConnected(deviceAddress, scratchPad)) return false; _wire->reset(); _wire->select(deviceAddress); _wire->write(STARTCONVO, parasite); // ASYNC mode? if (false == waitForConversion) return true; if (deviceAddress[0] == DS18S20MODEL) { delay(750); // max value found in datasheet return true; } // other models switch(scratchPad[CONFIGURATION]) { case TEMP_9_BIT: delay(94); break; case TEMP_10_BIT: delay(188); break; case TEMP_11_BIT: delay(375); break; case TEMP_12_BIT: default: delay(750); break; } return true; } // sends command for one device to perform a temp conversion by index bool DallasTemperature::requestTemperaturesByIndex(uint8_t deviceIndex) { DeviceAddress deviceAddress; getAddress(deviceAddress, deviceIndex); return requestTemperaturesByAddress(deviceAddress); } // Fetch temperature for device index float DallasTemperature::getTempCByIndex(uint8_t deviceIndex) { DeviceAddress deviceAddress; getAddress(deviceAddress, deviceIndex); return getTempC((uint8_t*)deviceAddress); } // Fetch temperature for device index float DallasTemperature::getTempFByIndex(uint8_t deviceIndex) { return toFahrenheit(getTempCByIndex(deviceIndex)); } // reads scratchpad and returns the temperature in degrees C float DallasTemperature::calculateTemperature(uint8_t* deviceAddress, uint8_t* scratchPad) { int16_t rawTemperature = (((int16_t)scratchPad[TEMP_MSB]) << 8) | scratchPad[TEMP_LSB]; switch (deviceAddress[0]) { case DS18B20MODEL: case DS1822MODEL: switch (scratchPad[CONFIGURATION]) { case TEMP_12_BIT: return (float)rawTemperature * 0.0625; break; case TEMP_11_BIT: return (float)(rawTemperature >> 1) * 0.125; break; case TEMP_10_BIT: return (float)(rawTemperature >> 2) * 0.25; break; case TEMP_9_BIT: return (float)(rawTemperature >> 3) * 0.5; break; } break; case DS18S20MODEL: /* Resolutions greater than 9 bits can be calculated using the data from the temperature, COUNT REMAIN and COUNT PER °C registers in the scratchpad. Note that the COUNT PER °C register is hard-wired to 16 (10h). After reading the scratchpad, the TEMP_READ value is obtained by truncating the 0.5°C bit (bit 0) from the temperature data. The extended resolution temperature can then be calculated using the following equation: COUNT_PER_C - COUNT_REMAIN TEMPERATURE = TEMP_READ - 0.25 + -------------------------- COUNT_PER_C */ // Good spot. Thanks Nic Johns for your contribution return (float)(rawTemperature >> 1) - 0.25 + ((float)(scratchPad[COUNT_PER_C] - scratchPad[COUNT_REMAIN]) / (float)scratchPad[COUNT_PER_C] ); break; } } // returns temperature in degrees C or DEVICE_DISCONNECTED if the // device's scratch pad cannot be read successfully. // the numeric value of DEVICE_DISCONNECTED is defined in // DallasTemperature.h. It is a large negative number outside the // operating range of the device float DallasTemperature::getTempC(uint8_t* deviceAddress) { // TODO: Multiple devices (up to 64) on the same bus may take // some time to negotiate a response // What happens in case of collision? ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) return calculateTemperature(deviceAddress, scratchPad); return DEVICE_DISCONNECTED; } // returns temperature in degrees F // TODO: - when getTempC returns DEVICE_DISCONNECTED // -127 gets converted to -196.6 F float DallasTemperature::getTempF(uint8_t* deviceAddress) { return toFahrenheit(getTempC(deviceAddress)); } // returns true if the bus requires parasite power bool DallasTemperature::isParasitePowerMode(void) { return parasite; } #if REQUIRESALARMS /* ALARMS: TH and TL Register Format BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 S 2^6 2^5 2^4 2^3 2^2 2^1 2^0 Only bits 11 through 4 of the temperature register are used in the TH and TL comparison since TH and TL are 8-bit registers. If the measured temperature is lower than or equal to TL or higher than or equal to TH, an alarm condition exists and an alarm flag is set inside the DS18B20. This flag is updated after every temperature measurement; therefore, if the alarm condition goes away, the flag will be turned off after the next temperature conversion. */ // sets the high alarm temperature for a device in degrees celsius // accepts a float, but the alarm resolution will ignore anything // after a decimal point. valid range is -55C - 125C void DallasTemperature::setHighAlarmTemp(uint8_t* deviceAddress, char celsius) { // make sure the alarm temperature is within the device's range if (celsius > 125) celsius = 125; else if (celsius < -55) celsius = -55; ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) { scratchPad[HIGH_ALARM_TEMP] = (uint8_t)celsius; writeScratchPad(deviceAddress, scratchPad); } } // sets the low alarm temperature for a device in degreed celsius // accepts a float, but the alarm resolution will ignore anything // after a decimal point. valid range is -55C - 125C void DallasTemperature::setLowAlarmTemp(uint8_t* deviceAddress, char celsius) { // make sure the alarm temperature is within the device's range if (celsius > 125) celsius = 125; else if (celsius < -55) celsius = -55; ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) { scratchPad[LOW_ALARM_TEMP] = (uint8_t)celsius; writeScratchPad(deviceAddress, scratchPad); } } // returns a char with the current high alarm temperature or // DEVICE_DISCONNECTED for an address char DallasTemperature::getHighAlarmTemp(uint8_t* deviceAddress) { ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) return (char)scratchPad[HIGH_ALARM_TEMP]; return DEVICE_DISCONNECTED; } // returns a char with the current low alarm temperature or // DEVICE_DISCONNECTED for an address char DallasTemperature::getLowAlarmTemp(uint8_t* deviceAddress) { ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) return (char)scratchPad[LOW_ALARM_TEMP]; return DEVICE_DISCONNECTED; } // resets internal variables used for the alarm search void DallasTemperature::resetAlarmSearch() { alarmSearchJunction = -1; alarmSearchExhausted = 0; for(uint8_t i = 0; i < 7; i++) alarmSearchAddress[i] = 0; } // This is a modified version of the OneWire::search method. // // Also added the OneWire search fix documented here: // http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295 // // Perform an alarm search. If this function returns a '1' then it has // enumerated the next device and you may retrieve the ROM from the // OneWire::address variable. If there are no devices, no further // devices, or something horrible happens in the middle of the // enumeration then a 0 is returned. If a new device is found then // its address is copied to newAddr. Use // DallasTemperature::resetAlarmSearch() to start over. bool DallasTemperature::alarmSearch(uint8_t* newAddr) { uint8_t i; char lastJunction = -1; uint8_t done = 1; if (alarmSearchExhausted) return false; if (!_wire->reset()) return false; // send the alarm search command _wire->write(0xEC, 0); for(i = 0; i < 64; i++) { uint8_t a = _wire->read_bit( ); uint8_t nota = _wire->read_bit( ); uint8_t ibyte = i / 8; uint8_t ibit = 1 << (i & 7); // I don't think this should happen, this means nothing responded, but maybe if // something vanishes during the search it will come up. if (a && nota) return false; if (!a && !nota) { if (i == alarmSearchJunction) { // this is our time to decide differently, we went zero last time, go one. a = 1; alarmSearchJunction = lastJunction; } else if (i < alarmSearchJunction) { // take whatever we took last time, look in address if (alarmSearchAddress[ibyte] & ibit) a = 1; else { // Only 0s count as pending junctions, we've already exhasuted the 0 side of 1s a = 0; done = 0; lastJunction = i; } } else { // we are blazing new tree, take the 0 a = 0; alarmSearchJunction = i; done = 0; } // OneWire search fix // See: http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295 } if (a) alarmSearchAddress[ibyte] |= ibit; else alarmSearchAddress[ibyte] &= ~ibit; _wire->write_bit(a); } if (done) alarmSearchExhausted = 1; for (i = 0; i < 8; i++) newAddr[i] = alarmSearchAddress[i]; return true; } // returns true if device address has an alarm condition // TODO: can this be done with only TEMP_MSB REGISTER (faster) // if ((char) scratchPad[TEMP_MSB] <= (char) scratchPad[LOW_ALARM_TEMP]) return true; // if ((char) scratchPad[TEMP_MSB] >= (char) scratchPad[HIGH_ALARM_TEMP]) return true; bool DallasTemperature::hasAlarm(uint8_t* deviceAddress) { ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) { float temp = calculateTemperature(deviceAddress, scratchPad); // check low alarm if ((char)temp <= (char)scratchPad[LOW_ALARM_TEMP]) return true; // check high alarm if ((char)temp >= (char)scratchPad[HIGH_ALARM_TEMP]) return true; } // no alarm return false; } // returns true if any device is reporting an alarm condition on the bus bool DallasTemperature::hasAlarm(void) { DeviceAddress deviceAddress; resetAlarmSearch(); return alarmSearch(deviceAddress); } // runs the alarm handler for all devices returned by alarmSearch() void DallasTemperature::processAlarms(void) { resetAlarmSearch(); DeviceAddress alarmAddr; while (alarmSearch(alarmAddr)) { if (validAddress(alarmAddr)) _AlarmHandler(alarmAddr); } } // sets the alarm handler void DallasTemperature::setAlarmHandler(AlarmHandler *handler) { _AlarmHandler = handler; } // The default alarm handler void DallasTemperature::defaultAlarmHandler(uint8_t* deviceAddress) { } #endif // Convert float celsius to fahrenheit float DallasTemperature::toFahrenheit(float celsius) { return (celsius * 1.8) + 32; } // Convert float fahrenheit to celsius float DallasTemperature::toCelsius(float fahrenheit) { return (fahrenheit - 32) / 1.8; } #if REQUIRESNEW // MnetCS - Allocates memory for DallasTemperature. Allows us to instance a new object void* DallasTemperature::operator new(unsigned int size) // Implicit NSS obj size { void * p; // void pointer p = malloc(size); // Allocate memory memset((DallasTemperature*)p,0,size); // Initalise memory //!!! CANT EXPLICITLY CALL CONSTRUCTOR - workaround by using an init() methodR - workaround by using an init() method return (DallasTemperature*) p; // Cast blank region to NSS pointer } // MnetCS 2009 - Unallocates the memory used by this instance void DallasTemperature::operator delete(void* p) { DallasTemperature* pNss = (DallasTemperature*) p; // Cast to NSS pointer pNss->~DallasTemperature(); // Destruct the object free(p); // Free the memory } #endif