Publications


Scientific Publications

  1. Potential human transmission of amyloid β pathology: Surveillance and risks. E. Lauwers et al. The Lancet Neurology 19(10):872 (2021). DOI: 10.1016/S1474-4422(20)30238-6

  2. Equations governing dynamics of excitation and inhibition in the mouse corticothalamic network. I-C. Lin, M. Okun, M. Carandini, K. D. Harris. BioRxiv (2021). DOI: 10.1101/2020.06.03.132688

  3. The nature of shared cortical variability. I-C. Lin, M. Okun, M. Carandini, K. D. Harris. Neuron, 87:644 (2015). DOI: 10.1016/j.neuron.2015.06.035

  4. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity. I-C. Lin, D. Xing, R. Shapley. J. Comput. Neurosci., 33:559 (2012). DOI: 10.1007/s10827-012-0401-0

  5. Structure and dynamics of liquid water from ab initio molecular dynamics - Comparison of BLYP, PBE and revPBE density functionals with and without van der Waals corrections. I-C. Lin et al. J. Chem. Theory Comput., 8:3902 (2012). DOI: 10.1021/ct3001848

  6. Enhanced conformational sampling of peptides via reduced side-chain and solvent masses. I-C. Lin, M. E. Tuckerman. J. Phys. Chem. B, 114:15935 (2010). DOI: 10.1021/jp109865y

  7. Dispersion corrected atom-centered potentials for phosphorus. M. Cascella, I-C. Lin, I. Tavernelli, U. Rothlisberger. J. Chem. Theory Comput., 5:2930 (2009). DOI: 10.1021/ct9003756

  8. Hydrogen bonding described using dispersion-corrected density functional theory. J. S. Arey, P. C. Aeberhard, I-C. Lin, U. Rothlisberger. J. Phys. Chem. B, 113:4726 (2009). DOI: 10.1021/jp810323m

  9. Accurate DFT descriptions for weak interactions of molecules containing sulfur. P. C. Aeberhard, J. S. Arey, I-C. Lin, U. Rothlisberger. J. Chem. Theory Comput., 5:23 (2009). DOI: 10.1021/ct800299y

  10. Multicenter-type corrections to standard DFT exchange and correlation functionals. I. Tavernelli, I-C. Lin, U. Rothlisberger. Phys. Rev. B, 79:045106 (2009). DOI: 10.1103/PhysRevB.79.045106

  11. Importance of van der Waals interactions in liquid water. I-C. Lin et al. J. Phys. Chem. B, 113:1127 (2009). DOI: 10.1021/jp806376e

  12. Atom-centered potentials to describe dispersion forces in density functional theory. I-C. Lin, U. Rothlisberger. CHIMIA, 62:231 (2008). DOI: 10.2533/chimia.2008.231

  13. Describing weak interactions of biomolecules with dispersion-corrected density functional theory. I-C. Lin, U. Rothlisberger. Phys. Chem. Chem. Phys., 10:2730 (2008). DOI: 10.1039/b718594d

  14. Predicting noncovalent interactions between aromatic biomolecules with London-dispersion-corrected DFT. I-C. Lin et al. J. Phys. Chem. B, 111:14346 (2007). DOI: 10.1021/jp0750102

  15. Weakly bonded complexes of aliphatic and aromatic carbon compounds described with dispersion corrected density functional theory. E. Tapavicza et al. J. Chem. Theory Comput., 3:1673 (2007). DOI: 10.1021/ct700049s

  16. Library of dispersion-corrected atom-centered potentials for generalized gradient approximation functionals: Elements H, C, N, O, He, Ne, Ar, and Kr. I-C. Lin et al. Phys. Rev. B, 75:205131 (2007). DOI: 10.1103/PhysRevB.75.205131

  17. Controlling crystallization and its absence: proteins, colloids and patchy models. J. P. K. Doye et al. Phys. Chem. Chem. Phys., 9:2197 (2007). DOI: 10.1039/b614955c

JPCB = J. Phys. Chem. BPRB = Phys. Rev. BPCCP = Phys. Chem. Chem. Phys.