Total Citations = 1959 h-index = 27, i-10 index = 53
Please note: The copyrights to these publications are held by their publishers. The pdf files provided here may be used only for single copies for personal use, as though they were reprints provided by mail. They may not be reposted on other websites or used for any other purpose without the express permission of the appropriate publishers
2025
86. Swarnakara S, Chaudhurya A, Skodab MWA, Chakraborty H, and Basu JK. Microscopic insight into HIV Fusion Peptide-Mediated Dehydration and Packing Regulation in Membranes. Biophys. J. 2025, 124: 2465-2475.
85. Panda MS and Chakraborty H*. Importance of the number and position of tryptophan-aspartate repeats in designing peptide-based membrane fusion inhibitors. Chem. Asian J. 2025, 16: e00474.
84. Porte S#, Pandia S#, Joardar A, Saraf D, Pinjari A, Chakraborty H* and Sengupta D*. Anomalous membrane organization by omega-6 and omega-9 fatty acids. Phys. Chem. Chem. Phys. 2025, 27: 6235-6248. #Authors contributed equally
83. Panda MS#, Raghav S#, Ghosh S and Chakraborty H*. gp41 fusion peptide alters the properties of lipid monolayer at the air-water interface in a cholesterol-dependent fashion: implications in membrane fusion. Langmuir 2025, 41: 6103–6112. #Authors contributed equally
82. Mishra S and Chakraborty H*. Dengue virus fusion peptide promotes hemifusion formation by disordering the interfacial region of the membrane. J. Membr. Biol. 2025, 258: 161-171.
81. Panda MS, Bushra B, Vishwakarma V, Pattnaik GP, Haldar S and Chakraborty H*. Developing peptide-based fusion inhibitors as an antiviral strategy utilizing Coronin 1 as a template. RSC Med. Chem. 2025, 16, 125-136.
2024
80. Pradhan S, Mirdha L, Sengupta T and Chakraborty H*. Implications of the lipidic ecosystem for the membrane binding of ApoE signal peptide: Importance of sphingomyelin. ChemBioChem 2024, 25: e202400469.
79. Pandia S and Chakraborty H* Strategic design of tryptophan-aspartic acid containing peptide inhibitors using coronin 1 as a template: Inhibition of fusion by enhancing acyl chain order. J. Phys. Chem. B. 2024, 128: 9163–9171.
78. Pandia S, Mahapatra A and Chakraborty H* A coronin 1-derived peptide inhibits membrane fusion by modulating membrane organization and dynamics. J. Phys. Chem. B. 2024, 128: 4986–4995.
77. Pradhan S, Mirdha L, Sengupta T and Chakraborty H*. Phosphatidylglycerol acts as a switch for cholesterol-dependent membrane binding of ApoE signal peptide. Langmuir 2024, 40: 8126–8132.
76. Pandia S and Chakraborty H* Navigating the Mechanistic Pathways of Membrane Fusion: The Lipid Perspective. Eur. Phys. J. Spec. Top. 2024, 233: 2965–2979
75. Mirdha L and Chakraborty H*. Biological Membranes: Nature’s Own Nanomaterials (Invited Chapter) Bioderived Materials: Harnessing Nature for Advanced Biochemical, Bentham Science Publishers, 2024, 170-192.
2023
74. Chaudhury A, Swarnakar S, Pattnaik GP, Varshney G, Chakraborty H*, and Basu JK. Peptide induced fusion of dynamic membrane nanodomains: Implications in viral entry. Langmuir 2023, 39: 17713-17722.
73. Mishra S and Chakraborty H*. Phosphatidylethanolamine and cholesterol promote hemifusion formation: A tug of war between membrane interfacial order and intrinsic negative curvature of lipids. J. Phys. Chem. B 2023, 127: 7721-7729.
72. Mishra S, Panda MS and Chakraborty H*. Fusion peptide induced modification of membrane organization and dynamics: Implications in developing fusion inhibitors. Chem. Phys. Impact 2023, 7: 100287
71. Joardar A and Chakraborty H*. Differential Behavior of Eicosapentaenoic and Docosahexaenoic Acids on Organization, Dynamics, and Fusion of Homogeneous and Heterogeneous Membranes. Langmuir 2023, 39: 4439-4449.
70. Gupta A, Kallianpur M, Saha Roy D, Engberg O, Chakraborty H, Huster D and Maiti S. Different Membrane Order Measurement Techniques are Not Mutually Consistent. Biophys. J. 2023, 122: 964-972.
69. Meher G, Bhattacharjya S and Chakraborty H*. Membrane Cholesterol Regulates the Oligomerization and Fusogenicity of SARS-CoV Fusion Peptide: Implications in Viral Entry. Phys. Chem. Chem. Phys. 2023, 25: 7815-7824.
68. Joardar A, Pandia S and Chakraborty H*. Effect of Polyunsaturated Free Fatty Acids on Membrane Fusion Mechanism. Soft Matter 2023, 19: 733-742.
2022
67. Chakraborty H* and Sengupta D. Preface to Special Issue on Protein-Mediated Membrane Remodeling. J. Membr. Biol. 2022, 255: 633 - 635.
66. Mirdha L, Sengupta T and Chakraborty H*. Lipid composition dependent binding of apolipoprotein E signal peptide: Importance of membrane cholesterol in protein. Biophys. Chem, 2022, 291: 106907
65. Mirdha L and Chakraborty H*. Membrane cholesterol modulates the dynamics and depth of penetration of k-casein. J. Mol. Liq. 2022, 363: 119849.
64. Joardar A, Pattnaik GP, and Chakraborty H*. Combination of oleic acid and gp41 fusion peptide switches the phosphatidylethanolamine-induced membrane fusion mechanism from non-classical to classical stalk model. J. Phys. Chem. B 2022, 126: 3673–3684.
63. Joardar A, Pattnaik GP, and Chakraborty H*. Mechanism of Membrane Fusion: Interplay of Lipid and Peptide. J. Membr. Biol. 2022, 255: 211-224.
62. Pattnaik GP, and Chakraborty H*. Fluorescence Anisotropy: Probing Rotational Dynamics of Biomolecules. (Invited Chapter) Optical Spectroscopic and Microscopic Techniques: Analysis of Biological Molecules, Springer 2022, First Edition.
2021
61. Joardar A, Pattnaik GP, and Chakraborty H*. Effect of phosphatidylethanolamine and oleic acid on membrane fusion: phosphatidylethanolamine circumvents classical stalk model. J. Phys. Chem. B 2021, 125: 13192-13202.
60. Bhuyan NN, Joardar A, Bag BP, Chakraborty H*, and Mishra A*. Exploring the Inclusion Complex Formation of 3-Acetylcoumarin with β-Cyclodextrin and its Delivery to a Carrier Protein: A Spectroscopic and Computational Study. J. Mol. Liq. 2021, 344: 117752.
59. Pattnaik GP and Chakraborty H*. Cholesterol: A Key Player in Membrane Fusion that Modulates the Efficacy of Fusion Inhibitor Peptides. (Invited Chapter) Hormones, Regulators and Viruses, Academic Press (Elsevier) 2021, 117: 133-155.
58. Pal S, Chakraborty H and Chattopadhyay A. Lipid Headgroup Charge Controls Melittin Oligomerization in Membranes: Implications in Membrane Lysis. J. Phys. Chem. B 2021, 125: 8450-8459. (Published as part of The Journal of Physical Chemistry virtual special issue "125 Years of The Journal of Physical Chemistry")
57. Meher G and Chakraborty H*. Oligomerization of Fusion Proteins: A Common Symptom for Class I Viruses. (Invited Chapter) Human Viruses: Diseases, Treatments and Vaccines, Springer, 2021, 693-712.
56. Pattnaik GP and Chakraborty H*. Fusogenic effect of cholesterol prevails over the inhibitory effect of a peptide-based membrane fusion inhibitor. Langmuir 2021, 37: 3477-3489.
55. Pattnaik GP, Bhattacharjya S and Chakraborty H*. Enhanced Cholesterol-dependent Hemifusion by Internal Fusion Peptide 1 of SARS Coronavirus-2 Compared to its N-terminal Counterpart. Biochemistry 2021, 60: 559-562.
54. Mirdha L and Chakraborty H*. Fluorescence-based techniques for the detection of the oligomeric status of proteins: Implication in amyloidogenic diseases. Eur. Biophys. J. 2021, 50: 671-685.
53. Bhuyan NN, Pattnaik GP, Mishra A* and Chakraborty H*. Exploring membrane viscosity at the headgroup region utilizing a hemicyanine-based fluorescent probe. J. Mol. Liq. 2021, 325: 115152.
52. Meher G and Chakraborty H*. The Role of Fusion Peptides in Depth-dependent Membrane Organization and Dynamics in Promoting Membrane Fusion. (Invited Review) Chem. Phys. Lipids. 2021, 234: 105025.
2020
51. Joardar A, Meher G, Bag BP, and Chakraborty H*. Host-guest Complexation of Eugenol in Cyclodextrins for Enhancing Bioavailability. J. Mol. Liq. 2020, 319: 114336.
50. Pattnaik GP, and Chakraborty H*. Entry Inhibitors: Efficient Means to Block Viral Infection. (Invited Review) J. Membr. Biol. 2020, 253: 425–444.
49. Chakraborty H*, and Bhattacharya S*. Mechanistic Insights of Host Cell Fusion of SARS-CoV-1 and SARS-CoV-2 from Atomic Resolution Structure and Membrane Dynamics. (Invited Review) Biophys. Chem. 2020, 265: 106438.
48. Mirdha L and Chakraborty H*. Fluorescence Quenching by Ionic Liquid as a Potent Tool to Study Protein Unfolding Intermediates. J. Mol. Liq. 2020, 312: 113408.
47. Chakraborty H. Membrane Cholesterol and SARS-CoV-2 Infection: A Possible Connection. (Opinion Article) Curr. Sci. 2020, 118: 1157.
46. Rao BD, Chakraborty H, Chaudhuri A, and Chattopadhyay A. Differential Sensitivity of pHLIP to Ester and Ether Lipids. Chem. Phys. Lipids 2020, 226: 104849.
2019
45. Meher G, Bhattacharjya S, and Chakraborty H*. Membrane Cholesterol Modulates Oligomeric Status and Peptide-membrane Interaction of Severe Acute Respiratory Syndrome Coronavirus Fusion Peptide. J. Phys. Chem. B 2019, 123: 10654-10662.
44. Barla LS, Pattnaik G P, Meher G, Padhan SK, Sahu SN*, and Chakraborty H*. Fluorescence-based Ion Sensing in Lipid Membranes: A Simple Way of Sensing in Aqueous Medium with Enhanced Efficiency. RSC Advances 2019, 9: 31030-31034.
43. Pattnaik GP, and Chakraborty H*. Cholesterol Alters the Inhibitory Efficiency of Peptide-based Membrane Fusion Inhibitor. Biochim. Biophys. Acta (Biomembranes) 2019, 1861:183056.
42. Meher G, Sinha S, Pattnaik GP, Ghosh Dastidar S, and Chakraborty H*. Cholesterol Modulates Membrane Properties and the Interaction of gp41 Fusion Peptide to Promote Membrane Fusion. J. Phys. Chem. B 2019, 123: 7113-7122.
41. Meher G and Chakraborty H*. Membrane Composition Modulates Fusion by Altering Membrane Properties and Fusion Peptide Structure. (Invited Review) J. Membr. Biol. 2019, 252: 261-272.
40. Mirdha L and Chakraborty H*. Characterization of Structural Conformers of κ-casein Utilizing Fluorescence Spectroscopy. Int. J. Biol. Macromol. 2019, 131: 89-96.
2018
39. Pattnaik GP and Chakraborty H*. Coronin 1 Derived Tryptophan-Aspartic Acid Containing Peptides Inhibit Membrane Fusion. Chem. Phys. Lipids 2018, 217: 35-42.
38. Rao BD, Chakraborty H, Keller S and Chattopadhyay A. Aggregation Behavior of pHLIP in Aqueous Solution at Low Concentrations: A Fluorescence Study. J. Fluoresc. 2018, 28: 967-973.
37. Pattnaik GP, Meher G, and Chakraborty H*. Exploring the Mechanism of Viral Peptide-induced Membrane Fusion. Adv. Exp. Med. Biol. 2018, 1112: 69-78.
36. Meher G, and Chakraborty H*. Influence of Eugenol on the Organization and Dynamics of Lipid Membranes: A Phase-Dependent Study. Langmuir 2018, 34: 2344-2351.
35. Chakraborty H, Jafurulla M, Clayton AHA, Chattopadhyay A. Exploring Oligomeric State of the Serotonin1A Receptor utilizing Photobleaching Image Correlation Spectroscopy: Implications for Receptor Function. Faraday Discuss. 2018, 207: 409-421.
2017
34. Chakraborty H, and Chattopadhyay A. Sensing Tryptophan Microenvironment of Amyloid Protein Utilizing Wavelength-Selective Fluorescence Approach. J. Fluoresc. 2017; 27: 1995-2000.
33. Mishra S, Meher G, and Chakraborty H*. Conformational Transition of k-Casein in Micellar Environment: Insight from the Tryptophan Fluorescence. Spectrochim. Acta Mol. Biomol. Spectrosc. 2017; 186: 99-104.
32. Sarkar P, Chakraborty H, and Chattopadhyay A. Differential Membrane Dipolar Orientation Induced by Acute and Chronic Cholesterol Depletion. Sci. Rep. 2017, 7: 4484.
31. Meher G and Chakraborty H*. Organization and Dynamics of Trp14 of Hemagglutinin Fusion Peptide in Membrane Mimetic Environment. Chem. Phys. Lipids 2017; 205: 48-54. [PDF]
30. Chakraborty H*, Lentz BR, Kombrabail M, Krishnamoorthy G, and Chattopadhyay A. Depth-dependent Membrane Ordering by Hemagglutinin Fusion Peptide Promotes Fusion. J. Phys. Chem. B 2017; 121: 1640-1648. [PDF]
2016
29. Sethy D and Chakraborty H*. Micellar Dipolar Rearrangement is Sensitive to Hydrophobic Chain Length: Implication for structural switchover of Piroxicam. Chem. Phys. Lipids 2016; 200: 120-125. [PDF]
28. Chaudhuri A, Prasanna X, Agiru P, Chakraborty H, Rydström A, Ho JCS, Svanborg C, Sengupta D., and Chattopadhyay A. Protein-dependent Membrane Interaction of A Partially Disordered Protein Complex with Oleic Acid: Implications for Cancer Lipidomics. Sci. Rep. 2016, 6: 35015. [PDF]
27. Pal S, Chakraborty H, Bandari S, Yahioglu G, Suhling K, Chattopadhyay A. Molecular Rheology of Neuronal Membranes Explored using a Molecular Rotor: Implications for Receptor Function. Chem. Phys. Lipids 2016;196: 69-75. [PDF]
2015
26. Chakraborty H*, Haldar S, Chong P, Kombrabail M, Krishnamoorthy G, and Chattopadhyay A. Depth-dependent Organization and Dynamics of Archaeal and Eukaryotic Membranes: Development of Membrane Anisotropy Gradient with Natural Evolution. Langmuir 2015; 31: 11591−11597. [PDF]
25. Chakraborty H, and Chattopadhyay A. Excitements and Challenges in GPCR Oligomerization: Molecular Insight from FRET. ACS Chem. Neurosci. 2015; 6: 199-206. [PDF]
24. Tarafdar PK, Chakraborty H, Bruno M, and Lentz BR. Phosphatidylserine-Dependent Catalysis of Stalk and Pore Formation by Synaptobrevin JMR-TMD Peptide. Biophys. J. 2015;109:1863-1872. [PDF]
2014
23. Bandari S, Chakraborty H, Covey DF, and Chattopadhyay A. Membrane Dipole Potential is Sensitive to Cholesterol Stereospecificity: Implications for Receptor Function. Chem. Phys. Lipids 2014;184:25-29. [PDF]
22. Chakraborty H, Sengupta T, and Lentz BR. pH Alters Fusion of Phosphatidylethanolamine-containing Vesicles. Biophys. J. 2014;107:1327-1338. [PDF]
21. Sengupta T#, Chakraborty H#, and Lentz BR. The Transmembrane Domain Peptide of Vesicular Stomatitis Virus Promotes Both Intermediate and Pore Formation during PEG-mediate Vesicle Fusion. Biophys. J. 2014; 107:1318-1326. #Authors contributed equally [PDF]
20. Kota P, Buchner G, Chakraborty H, Dang YL, He H, Garcia GJM, Kubelka J, Gentzsch M, Stutts, MJ, and Dokholyan NV. The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel. J. Biol. Chem. 2014; 289:23029 –23042. [PDF]
19. Chakraborty H, Devi PG, Sarkar M, Dasgupta D. New Functions of Old Drugs: Aureolic Acid Group of Anti-cancer Antibiotics and Non Steroidal Anti-inflammatory Drugs. Recent Advances in Medicinal Chemistry, Bentham Publishers, Volume-1, 2014, 3-55. [PDF]
2013
18. Chakraborty H, Tarafdar PK, Klapper D, and Lentz BR. Wild Type and Mutant Hemagglutinin Fusion Peptides Alter Bilayer Structure as well as Kinetics and Activation Thermodynamics of Stalk and Pore Formation Differently: Mechanistic Implications. Biophys. J. 2013; 105:2495-2506. [PDF]
17. Chakraborty H, Tarafdar PK, and Lentz BR. A Novel Assay to Detect Fusion Pore Formation: Implication for Fusion Mechanism. Biochemistry 2013; 52:8510-8517. [PDF]
2012
16. Chakraborty H, Tarafdar PK, Bruno MJ, Sengupta T, and Lentz BR. Activation Thermodynamics of PEG-mediated Model Membrane Fusion is Consistent with Mechanistic Models of Stalk and Pore Formation. Biophys. J. 2012; 102:2751-2760. [PDF]
15. Tarafdar PK, Chakraborty H, Dennison SM, and Lentz BR. Phosphatidylserine Inhibits and Calcium Promotes Model Membrane Fusion. Biophys. J. 2012; 103:1880-1889. [PDF]
14. Chakraborty H, and Lentz BR. A Simple Method for Correction of Circular Dichroism Spectra Obtained from Membrane-containing Samples. Biochemistry 2012; 51:1005-1108. (Highlighted in the Biochemistry Home Page) [PDF]
2011
13. Haque ME#, Chakraborty H#, Koklic T, Komatsu H, Axelson PH, and Lentz BR. Hemagglutinin Fusion Peptide Mutants in Model Membranes: Structural Properties, Membrane Physical Properties and PEG-mediated Fusion. Biophys. J. 2011; 101:1095-1104. #Authors contributed equally [PDF]
2009
12. Kundu S, Chakraborty H, Sarkar M, and Datta A. Interaction of Oxicam NSAIDs with Lipid Monolayer Anomalous Dependence on Drug Concentration. Colloids and Surfaces B: Biointerface 2009; 70:157-161. [PDF]
2008
11. Chakraborty H, Mondal S, and Sarkar, M. Membrane Fusion: A New Function of Non Steroidal Anti-inflammatory Drugs. Biophys. Chem. 2008;137: 28-34. (Research Highlight in NATURE India). [PDF]
10. Chakraborty H, Devi PG, Sarkar M, and Dasgupta D. Multiple Functions of Generic Drugs: Future Perspectives of Aureolic Acid Group of Anti-cancer Antibiotics and Non Steroidal Anti-inflammatory Drugs. Mini Rev. Med. Chem. 2008; 8:331-349. [PDF]
2007
9. Chakraborty H, Chakraborty PK, Raha S, Mandal PC, and Sarkar M. Interaction of Piroxicam with Mitochondrial Membrane and Cytochrome c. Biochim. Biophys. Acta (Biomembranes) 2007; 1768:1138-1146. [PDF]
8. Chakraborty H, and Sarkar M. Interaction of Piroxicam and Meloxicam with DMPG/DMPC Mixed Vesicles: Anomalous Partitioning Behavior. Biophys. Chem. 2007; 125:306-313. [PDF]
2005
7. Chakraborty H, Roy S, and Sarkar M. Interaction of Oxicam NSAIDs with DMPC Vesicles: Differential Partitioning of Drugs. Chem. Phys. Lipids 2005; 138:20-28. [PDF]
6. Chakraborty H, and Sarkar M. Effect of Counterion on the Structural Switchover and Binding of Piroxicam with Sodium Dodecyl Sulfate (SDS) Micelles. J. Colloid. Interface. Sci. 2005; 292:265-270. [PDF]
5. Chakraborty H, and Sarkar M. Interaction of Piroxicam with Micelles: Effect of Hydrophobic Chain Length on Structural Switchover. Biophys. Chem. 2005; 117:79-85. [PDF]
2004
4. Banerjee R, Chakraborty H, and Sarkar M. Host-Guest Complexation of Oxicam NSAIDs with b-cyclodextrin. Biopolymers 2004; 75:355-365. [PDF]
3. Chakraborty H, and Sarkar M. Optical Spectroscopic and TEM Studies of Catanionic Micelles of CTAB/SDS and their Interaction with a NSAID. Langmuir 2004; 20:3551-3558. [PDF]
2003
2. Chakraborty H, Banerjee R, and Sarkar M. Incorporation of NSAIDs in Micelles: Implication of Structural Switchover in Drug-Membrane Interaction. Biophys. Chem. 2003; 104:315-325. [PDF]
1. Banerjee R, Charkaborty H, and Sarkar M. Photophysical Studies of Oxicam Group of NSAIDs: Piroxicam, Meloxicam and Tenoxicam. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2003; 59:1213-1222. [PDF]