Combining theory and experiment to accelerate the development of flexible conductors:

Predicting chain conformations, entanglements, and liquid crystalline phases of conjugated polymers 

Welcome to the homepage for our NSF-sponsored project on accelerating the development of conjugated polymers.  

Conjugated polymers possess a unique combination of mechanical and electrical properties that may enable flexible electronic devices capable of transforming our society through next-generation distributed power, solid-state lighting, personal electronics, and biomedical devices.  The project has developed tools to predict fundamental properties of conjugated polymers, such as the stiffness of the chain backbones, their ability to form liquid crystals, and the likelihood that chains will entangle, all from the chemical structure. As such, the combination of theory, simulation, and experiment provides opportunities to refine design concepts in conjugated polymers and therefore create an accelerated materials design framework useful for both academic and industrial efforts. Furthermore, this program leverages Penn State's unique multi-campus structure to explore the use of remote research activities as a recruiting and retention tool. 


Publications from this project

"Predicting Flory-Huggins c from Simulations", Zhang, W.; Gomez, E.D.; Milner, S.T., Physical Review Letters, 2017, 119, 017801. 

Glass Transition Temperature of Conjugated Polymers by Oscillatory Shear Rheometry", Xie, R.; Lee, Y.; Aplan, M.P.; Caggiano, N.J.; Muller, C.; Colby, R.H.; Gomez, E.D., Macromolecules, 2017, 50, 5146–5154. 

"Connecting the Mechanical and Conductive Properties of Conjugated Polymers", Xie, R.; Colby, R.H.; Gomez, E.D., Advanced Electronic Materials, 2018, 4, 1700356. 

"Side Chain Length Affects Backbone Dynamics in Poly(3-alkylthiophene)s", Zhan, P.; Zhang, W.; Jacobs, I.E.; Nisson, D.M.; Xie, R.; Weisen, A.R.; Colby, R.H.; Moule, A.J.; Milner, S.T.; Maranas, J.K.; Gomez, E.D., Journal of Polymer Science Part B: Polymer Physics, 2018, 56 (17), 1193-1202. 

"Nematic order imposes molecular weight effect on charge transport in conjugated polymers", Zhang, W.; Milner, S.T.; Gomez, E.D., ACS Central Science, 2018, 4 (3), 413-421. 

"The Effect of Single Atom Replacement on Organic Thin Film Transistors: Case of Thieno[3,2-b]pyrrole vs. Furo[3,2-b]pyrrole", Bulumulla, C.; Gunawardhana, R.; Yoo, S. H.; Mills, C.R.; Kularatne, R.V.; Jackson, T.N.; Biewer, M.C.; Gomez, E.D.; Stefan, M.C., Journal of Materials Chemistry C, 2018, 6, 10050-10058. 

"Local Chain Alignment via Nematic Ordering Reduces Chain Entanglement in Conjugated Polymers", Xie, R.; Aplan, M.P.; Caggiano, N.J.; Weisen, A.R.; Su, T.; Muller, C.; Segad, M.; Colby, R.H.; Gomez, E.D., Macromolecules, 2018, 51 (24), 10271–10284. 

"Direct probe of the nuclear modes limiting charge mobility in molecular semiconductors", Harrelson, T.F.; Dantanarayana, V.; Xie, X.; Koshnick, C.; Nai, D.; Fair, R.; Nunez, S.A.; Hickner, M.A.; Anthony, J.A.; Gomez, E.D.; Troisi, A.; Faller, R.; Moule, A.J., Materials Horizons, 2019, 6, 182-191.

"Nematic coupling in polybutadiene from MD simulations", Shetty, S.; Gomez, E.D.; Milner, S.T.,  Macromolecules, 2019, 52 (2) 528-534.

"Thermal fluctuations lead to cumulative disorder and enhance charge transport in conjugated polymers", Zhang, W.; ,Bombile, J.H.; Weisen, A.R.; Xie, R.; Colby, R.H.; Janik, M.J.; Milner, S.T.; Gomez, E.D.,  Macromolecular Rapid Communications, 2019,  40 (15), 1900134. 

"Characterization of chain alignment at buried interfaces using Mueller matrix spectroscopy", Smith, B.H.; Xie, R.; Adhikari, D.; Podraza, N.J.; Gomez, E.D., MRS Communications, 2020, 10 (2), 292-297. 

"Glass Transition Temperature from the Chemical Structure of Conjugated Polymers", Xie, R., Weisen, A.R., Lee, Y., Aplan, M.A., Fenton, A.M., Masucci, A.E., Kempe, F., Sommer, M., Pester, C.W., Colby, R.H., Gomez, E.D., Nature Communications, 2020, 11, 893. 

"Morphing simulations reveal architecture effects on polymer miscibility", Shetty, S.; Adams, M.; Gomez, E.D., Milner, S.T., Macromolecules, 2020, 53 (21), 9386-9396. 

"Unified Entanglement Scaling for Flexible, Semiflexible, and Stiff Polymer Melts and Solutions", Milner, S.T.; Macromolecules, 2020, 53 (4), 1314-1325.

"Fast, faithful simulations of donor-acceptor interface morphology", Agarwala, P.; Gomez, E.D.; Milner, S.T., Journal of Chemical Theory and Computation, 2022, 18 (11), 6932–6939. 

"Predicting mixing free energy using mutual ghosting", Shetty, S.; Agarwala, P.; Gomez, E.D.; Milner, S.T., Molecular Systems Design & Engineering, 2022, 7, 1529-1537. 

"Predicting the plateau modulus from molecular parameters of conjugated polymers", Fenton, A.; Xie, R.; Aplan, M.P.; Lee, Y.; Gill, M.; Fair, R.A.; Kempe, F.; Sommer, M.; Snyder, C.; Gomez, E.D.; Colby, R.H., ACS Central Science, 2022, 8 (2), 268-274.  

"Tuning of the elastic modulus of a soft polythiophene through molecular doping", Zokaei, S.; Kim, D.; Järsvall, E.; Fenton, A.; Weisen, A.; Hultmark, S.; Nguyen, P.; Matheson, A.; Lund, A.; Kroon, R.; Chabinyc, M.; Gomez, E.D.; Zozoulenko, I.; Müller, C., Materials Horizons, 2022, 9, 433-443. 

"Predicting χ from concentration response to spatially varying potentials", Agarwala, P., Gomez, E.D.; Milner, S.T., Macromolecules 2023, 56 (17), 6859–6869.  

"Machine learning identifies strong electronic contacts in semiconducting polymer melts", Agarwala, P.; Donaher, S.; Ganapathysubramanian, B.; Gomez, E.D.; Milner, S.T., Macromolecules, 2023, 56 (15), 5698–5707. 

"Blends of Conjugated and Adhesive Polymers for Sticky Organic Thin-Film Transistors", Sutjianto, J.G.; Yoo, S.H.; Westerman, C.R.; Jackson, T.N.; Wilker, J.J.; Gomez, E.D., Advanced Electronic Materials,  2023, 2300422. 

"NMR and GPC Analysis of Alkyd Resins: Influence of Synthesis Method, Vegetable Oil and Polyol Content",  Hadzich, A.; Flores, S.; Masucci, A.E.; Gomez, E.D.; Groß, G.A., Polymers, 2023, 15, 1993. 

"Enhancing photoluminescence of conjugated nanoparticles through graft polymer architectures", Masucci, A.; Ghasemi, M. Pester, C.W.; Gomez, E.D., Materials Advances, 2023, 4, 2586-2594.  

"Inelastic neutron scattering probes intermolecular lattice modes that limit charge transport in organic semiconductors", Adhikari, J.M.; Zhan, P.; Calitree, B.D.; Zhang, W.; Fair, R.; Harrelson, T.F.; Faller, R.; Moule, A.J.; Milner, S.T.; Maranas, J.K.; Hickner, M.A.; Gomez, E.D., submitted 2024.

"Backbone and side group interchain correlations govern X-ray scattering of poly(3-hexylthiophene) ", Agarwala, P.; Shetty, S.;  Fenton, A.M.; Dursun, B.; Milner, S.T.; Gomez, E.D., submitted 2024.  


Glass transition temperature and densities of conjugated polymers

(measured via rheology by Albree Weisen and Renxuan Xie)

The following is a summary of glass transition temperatures obtained from the peak in the loss modulus of conjugated polymers.  Densities, as measured in the rheometer, are also included.  For more details on the approach, see "Glass Transition Temperature of Conjugated Polymers by Oscillatory Shear Rheometry", Xie, R.; Lee, Y.; Aplan, M.P.; Caggiano, N.J.; Muller, C.; Colby, R.H.; Gomez, E.D., Macromolecules, 2017, 50, 5146–5154. 

Please keep in mind that these values are preliminary.  

Tg  of polymers (pdf)

Densities of polymers (pdf)

You can also find Tgs, including rheology data, on ScholarSphere here: https://scholarsphere.psu.edu/collections/prr171z013

And densities as a function of temperature on ScholarSphere here: https://scholarsphere.psu.edu/collections/qrf55z8741 

Software

Predicting chain the persistence of conjugated polymers through the freely-rotating chain model

Persistence length code

Predicting wide angle scattering from simulations

Predicting scattering code

Using machine learning to identify strong electronic contacts

ML for strong electronic contacts code

---

This material is based upon work supported by the National Science Foundation, DMREF program, under Grant Number DMR-1629006 and DMR-1921854 (PI: Enrique Gomez, co-PIs: Scott Milner and Ralph Colby).  Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.