PATENT
[77] NO Sensor and Sensor Systems
P. K. Dutta, C. Sun, G. Maduraiveeran
US Patent 2015, 9,217,721. (Received Royalty from Spirometrix, USA)
RESERACH PUBLICATIONS
2021
[76] Hierarchical Three-Dimensional Copper Selenide Nanocubes Microelectrodes for Improved Carbon Dioxide Reduction Reaction
R. Elakkiya, G. Maduraiveeran*
Sustainable Energy Fuels 2021, DOI https://doi.org/10.1039/D1SE01458G [IF: 6.4]
[75] Iron Sulphide Rice Grain Nanostructures as Potential Electrocatalysts for an Improved Oxygen Evolution Reaction
R. Elakkiya, G. Maduraiveeran*
Nanoscale 2021, 13, 14837-14846 [IF: 7.8]
[74] Hollow-Structured Cu0.4Zn0.6Fe2O4 as a Novel Negative Electrode Material for High-Performance Lithium-ion Batteries
G. Karunakaran, G. Maduraiveeran, E Kolesnikov, SK Balasingam, et al.
J. Alloys Compd. 2021, 865, 158769 [IF: 5.3]
[73] Carbon Nanomaterials: Synthesis, Properties and Applications in Electrochemical Sensors and Energy Conversion Systems
G. Maduraiveeran*, and W. Jin
Mater. Sci. Eng.: B 2021, 272, 115341
[72] Simultaneous Electrochemical Detection of Guanine and Adenine using Reduced Graphene Oxide Decorated with AuPt Nanoclusters
B. Mao, L. Qian, G. Maduraiveeran, Z. Liu, A. Chen
Microchim. Acta 2021, 188, 276 [IF: 5.83]
[71] Design of Transition Metal Oxides Nanosheets for the Direct Electrocatalytic Oxidation of Glucose
R. Elakkiya, S. Mathankumar, and G. Maduraiveeran*
Mater. Chem. Phys., 2021, 269, 124770 [IF: 4.1]
[70] Non-Enzymatic Glucose Detection Based on NiS Nanoclusters@ NiS Nanosphere in Human Serum and Urine
M. Arivazhagan, Y. Manova Santhosh, and G. Maduraiveeran*
Micromachines 2021, 12, 403 [IF: 2.89]
[69] Design of an Enzyme-mimicking NiO@Au Nanocomposite for the Sensitive Electrochemical Detection of Lactic Acid in Human Serum and Urine
G. Maduraiveeran*, and A. Chen
Electrochim. Acta. 2021, 368, 137612 [IF: 6.9]
[68] Metal Nanocomposites Based Electrochemical Sensor Platform for few Emerging Biomarkers
G. Maduraiveeran*
Curr. Anal. Chem. 2021 (Invited) DOI:10.2174/1573411016999201117094213 [IF: 1.4]
[67] Nanoporous Structured Mixed Transition Metal Oxides Nanomaterials for Electrochemical Energy Conversion Technologies
G. Maduraiveeran*
Mater. Lett. 2021, 283, 128763. [IF: 3.2]
[66] Metal Organic Frameworks: Preparation and Application in Electrocatalytic CO2 Reduction Reaction
R. Elakkiya, and G. Maduraiveeran*
Metal-Organic Frameworks for Chemical Reactions, Elsevier Publisher, 2021, 331-347 (Accepted For Publication) (Invited, Book Chapter)
2020
[65] Ultra-Fine Nickel Sulfide Nanoclusters @ Nickel Sulfide Microsphere as Enzyme-free Electrode Materials for Sensitive Detection of Lactic Acid
M. Arivazhagan, and G. Maduraiveeran*
J. Electroanal. Chem., 2020, 874, 114465 [IF: 3.8]
[64] Hollow Sphere Nickel Sulfide Nanostructures–based Enzyme Mimic Electrochemical Sensor Platform for Lactic Acid in Human Urine
M. Arivazhagan, A. Shankar, and G. Maduraiveeran
Microchim Acta 2020, 187, 468 [IF: 6.2]
[63] Two-Dimensional Earth-Abundant Transition Metal Oxides Nanomaterials: Synthesis and Application in Electrochemical Oxygen Evolution Reaction
R. Elakkiya, and G. Maduraiveeran*
Langmuir 2020, 36, 4728−4736. [IF: 3.6]
[62] Bionanomaterial-Based Electrochemical Biosensing Platforms for Biomedical Applications
G. Maduraiveeran*
Anal. Methods, 2020, 12, 1688–1701. [IF: 2.6]
[61] Self-Supported Fabrication and Electrochemical Water Splitting Study of Transition-Metal Sulphides Nanostructured Electrodes
A. Shankar, R. Elakkiya and G. Maduraiveeran*
New J. Chem., 2020, 44, 5071-5078. [IF: 3.3]
[60] Functional Nanomaterials-Derived Electrochemical Sensor and Biosensor Platforms for Biomedical Applications
G. Maduraiveeran*, and W. Jin
Handbook of Nanomaterials in Analytical Chemistry, Modern Trends in Analysis, Elsevier Publisher, 2020, 12, 297-327. (Invited, Book Chapter)
2019
[59] A Three-Dimensional Nickel−Cobalt Oxide Nanomaterial As Enzyme-mimic Electrocatalyst for the Glucose and Lactic Acid Oxidation Reaction
R. Elakkiya and G. Maduraiveeran*
New J. Chem. 2019, 43, 14756-14762. [IF: 3.3]
[58] Earth-Abundant Transition Metal and Metal Oxide Nanomaterials: Synthesis and Electrochemical Applications
G. Maduraiveeran*, M. Sasidharan and W. Jin
Prog. Mater. Sci. 2019, 106, 100574 [IF: 39.5]
[57] An Efficient Palm Waste Derived Hierarchical Porous Carbon Towards Electrocatalytic Hydrogen Evolution
N. Prabu, R.S. Arul Saravanan, T. Kesavan, G. Maduraiveeran, and M. Sasidharan
Carbon, 2019, 152, 188-197. [IF: 8.8]
[56] Bio-Derived Nanoporous Activated Carbon Sheets as Electrocatalyst for Enhanced Electrochemical Water Splitting
N. Prabu, T. Kesavan, G. Maduraiveeran*, and M. Sasidharan
Int. J. Hydrog. Energy, 2019, 44, 19995-20006. [IF: 4.2]
[55] Nitrogen-Self Doped Activated Carbon Nanosheets Derived From Peanut Shells for Enhanced Hydrogen Evolution Reaction
K. S. Arul Saravanan, N. Prabu, M. Sasidharan, and G. Maduraiveeran*
Appl. Surf. Sci. 2019, 489, 725-733. [IF: 4.4]
[54] Recent Advances of Porous Transition Metal-Based Nanomaterials for Electrochemical Energy Conversion and Storage Applications
W. Jin and G. Maduraiveeran*
Mater. Today Energy, 2019, 13, 64-64.[IF:5.6]
[53] Synthesis and Electrochemical Study of Mesoporous Nickel-Cobalt Oxides For Efficient Oxygen Reduction
S. Boopathy, P. Scott, W. Jiali, A. Thiruppathi, G. Maduraiveeran and A. Chen
ACS Appl. Mater. Interfaces, 2019, 11, 18295-18304. [IF:8.8]
[52] Flower-like Nickel-Cobalt Oxide Nanomaterials as Bi-functional Catalyst for Electrochemical Water Splitting
R. Elakkiya, R. Ramkumar, and G. Maduraiveeran*
Mater. Res. Bull. 2019, 116, 98-105.[IF:2.8]
[51] Encapsulated Spinel CuxCo3-xO4 in Carbon Nanotubes As Efficient And Stable Oxygen Electrocatalysts
W. Jin, J. Chen, Z. Wu, and G. Maduraiveeran
Int. J. Hydrogen Energy, 2019, 44, 11421-11430.[IF:4.2]
[50] Uncapped Silver Nanoclusters as Potential Catalyst for Enhanced Direct-Electrochemical Oxidation of 4-Nitrophenol
G.M. Kalaiyarasi, R. Elakkiya, M. Kundu, W. Jin, M. Sasidharan, G. Maduraiveeran*
J. Clust. Sci. 2019, 30, 393–402.[IF:1.7]
[49] Finely Tunable Morphology Controlled Synthesis of Spinel-Cobalt Oxide Nanostructures and Their Electrocatalytic Applications
P. Kannan, S. Boopathi, R. Kumaran, M. Kundu, M. Sasidhran, G. Maduraiveeran*
Mater. Res. Bull. 2019, 111, 230-237. [IF:2.8]
[48] Self-assembled Mesoporous Nb2O5 as a High Performance Anode Material for Rechargeable Lthium Ion Batteries
P. Venkatachalam, K. Thangaian, G. Maduraiveeran, M. Kundu, and M. Sasidharan
Mater. Res. Express 2019, 6, 035502.[IF:1.1]
[47] Hierarchical Nanoporous Activated Carbon as Potential Electrode Materials for High Performance Electrochemical Supercapacitor
T. Kesavan, T. Partheeban, M. Vivekanantha, M. Kundu, G. Maduraiveeran*,
M. Sasidharan
Microporous Mesoporous Mater. 2019, 274, 236-244.[IF:3.6]
2018
[46] High Temperature Hydrogen Gas Sensor Based on Three-Dimensional Hierarchical Nanostructured Nickel-Cobalt Oxide
G. Maduraiveeran, S. Boopathi, and A. Chen
ACS Appl. Nano Mater. 2018, 1, 6005-6014. [IF: N/A]
[45] Nanomaterials Based Environmental Sensing Platforms Using State-Of-The-Art Electroanalytical Strategies
W. Jin and G. Maduraiveeran*
J. Anal. Sci. Technol. 2018, 9, 18 (1-11). [IF: N/A]
[44] Morphology-Dependent Electrochemical Performance of Spinel-Cobalt Oxide Nanomaterials Towards Lithium-ion Batteries
T. Kesavan, S. Boopathi, M. Kundu, G. Maduraiveeran*, M. Sasidharan
Electrochim. Acta 2018, 283, 1668-1678. [IF:5.1]
[43] Morphology-Dependent Electrocatalytic Activity of Spinel-Cobalt Oxide Nanomaterial for Direct Hydrazine Fuel Cell Application
R. Kumaran, S. Boopathi, M. Kundu, M. Sasidharan and G. Maduraiveeran*
New J. Chem. 2018, 42, 13087-13095. [IF:3.2]
[42] Surface Roughened Pt Decorated Pd Nanoparticle as Efficient Electrocatalyst for Direct Alcohol Fuel Cell
N. Prabu, D. Jeyakumar, G. Maduraiveeran and M. Sasidharan
Eur. J. Inorg. Chem. 2018, 2018, 3978-3984. [IF:2.4]
[41] Hollow Mesoporous Heterostructures Negative Electrode Comprised of CoFe2O4@Fe3O4 for Next Generation Lithium Ion Batteries
G. Karunakaran, M. Kundu, G. Maduraiveeran, E. Kolesnikov, M. V. Gorshenkov, S. K. Balasingam, S. Kumari, M. Sasidharan, D. Kuznetsov
Micropor. Mesopor. Mat., 2018, 272, 1-7. [IF:3.6]
[40] ZnO/Cu2MgO3 Hollow Porous Nanocage: A New Class of Hybrid Anode Material for Advanced Lithium-Ion Batteries
G. Karunakarana, M. Kundu, S. Kumari, E. Kolesnikov, M.V. Gorshenkov, G. Maduraiveeran, M. Sasidharan, D. Kuznetsov
J. Alloys Compd. 2018, 763, 94–101. [IF:3.7]
[39] Fabrication of Hollow Co3O4 Nanospheres and Their Nanocomposites of CNT and rGO as High‐Performance Anodes for Lithium‐Ion Batteries
T. Kesavan, N. Gunawardhana, C. Senthil, M. Kundu, G. Maduraiveeran, M. Yoshio, M. Sasidharan
ChemSelect, 2018, 3, 5502-5511. [IF:1.5]
[38] Ascorbic Acid-Assisted Eco-friendly Synthesis of NiCo2O4 Nanoparticles as an Anode Material for High-Performance Lithium-Ion Batteries
G. Karunkaran, G. Maduraiveeran, E. Kolesnikov, S.K. Balasingam, et al.
JOM-The Minerals, Metals & Materials Society, 2018, 70, 1416-1422. [IF:2.1]
[37] Efficient Electrochemical Recovery of Fine Tellurium Powder From Hydrochloric Acid Media via Mass Transfer Enhancement
W. Jin, J. Suc, S. Chen, P. Li, M.S. Moats, G. Maduraiveeran and H. Lei
Sep. Purif. Technol. 2018, 203, 117-123. [IF:3.9]
[36] Preparation and Exploration on the Electrochemical Behavior of Nickel Oxide Nanoparticles Coated Bacterial Nanowires
M. Maruthupandy, M. Anand, G. Maduraiveeran, A.S.H. Beevi, R.J. Priya
J. Clust. Sci. 2018, 29, 483-492.[IF:1.3]
[35] Electrochemical Detection of Hydrogen Peroxide based on Silver Nanoparticles via Amplified Electron Transfer Process
G. Maduraiveeran*, M. Kundu and M. Sasidharan
J. Mater. Sci. 2018, 53, 8328–8338. [IF:2.9]
[34] Electrochemical Sensor and Biosensor Platforms Based on Advanced Nanomaterials for Biological and Biomedical Applications
G. Maduraiveeran*, M. Sasidharan, V. Ganesan
Biosens. Bioelectron. 2018, 103, 113-129.[IF:8.1]
[33] Bimetallic Gold-Nickel Nanoparticles as a Sensitive Amperometric Sensing Platform for Acetaminophen in Human Serum
G. Maduraiveeran*, R. Rasik, M. Sasidharan, W. Jin
J. Electroanal. Chem. 2018, 808, 259-265.[IF:3.0]
[32] Hierarchical Oxygen-implanted MoS2 Nanoparticle Decorated Graphene for the Non-Enzymatic Electrochemical Sensing of Hydrogen Peroxide in Alkaline Media
Y. Xue, G. Maduraiveeran, M Wang, S Zheng, Y Zhang, W Jin
Talanta, 2018, 176, 397-405.[IF:3.5]
2017
[31] Electrochemical and FTIR Spectroscopic Study of CO2 Reduction at a Nanostructured Cu/reduced Graphene Oxide Thin Film
N.M. Hossain, J. Wen, G. Maduraiveeran, SK. Konda and A. Chen
Electrochem. Commun., 2017, 82, 16-20.[IF:4.6]
[30] Fabrication of CuO Nanoparticles Coated Bacterial Nanowire Film for a High-Performance Electrochemical Conductivity
M. Maruthupandy, M. Anand, G. Maduraiveeran, ASH Beevi and R.J. Priya
J. Mater. Sci., 2017, 52, 10766-10778.[IF:2.9]
[29] Nanomaterials Based Electrochemical Environmental Sensor Platforms
G. Maduraiveeran, W. Jin and M. Sasidharan
LAP LAMBERT Academic Publishing (Germany), 2017, ISBN-13: 978-620-2-02232-3.
[28] Comparative Studies of Fe, Ni, Co and Their Bimetallic Nanoparticles for Electrochemical Water Oxidation
G. Maduraiveeran, B. Mao and A. Chen
J. Electrochem. 2017, 23, 159-169. (Special Issue)[IF:3.6]
[27] Electrochemical Detection of Chemical Pollutants based on Gold Nanomaterials
W. Jin and G. Maduraiveeran
Trends Environ. Anal. Chem. 2017, 14, 28-36.[IF:4.4]
[26] Nanomaterials Based Electrochemical Sensor and Biosensor Platforms for Environmental Applications
G. Maduraiveeran and W. Jin
Trends Environ. Anal. Chem. 2017, 13, 10-23. (Most Cited Paper)[IF:4.4]
[25] Gold Nanoparticles Based Sensing Platform of Hydrazine, Sulfite and Nitrite for Food Safety and Environmental Monitoring
G. Maduraiveeran and R. Ramaraj
J. Anal. Sci. Technol. 2017, 8, 14. (Featured Article)
2016
[24] Design and Electrochemical Study of Platinum-Based Nanomaterials for Sensitive Detection of Nitric Oxide in Biomedical Applications
G. Maduraiveeran, Z. Liu and A. Chen
Nanomaterials 2016, 6, 211 (1-16). (Invited Article)[IF:3.5]
[23] Enhanced Sensing of Mercuric Ions Based on Dinucleotide Functionalized Silver Nanoparticles
G. Maduraiveeran and R. Ramaraj
Anal. Methods, 2016, 8, 7966-7971.[IF:2.1]
[22] Simultaneous and Sensitive Detection of Acetaminophen and Valacyclovir based on Two Dimensional Graphene Nanosheets
B.R. Adhikari, G. Maduraiveeran, H. Schraft, A. Chen
J. Electroanal. Chem, 2016, 780, 241-248.[IF:3.0]
[21] Investigation on the Electrical Conductivity of ZnO Nanoparticles-Decorated Bacterial Nanowires
M. Maruthupandy, M. Anand, G. Maduraiveeran, et al.
Adv. Nat. Sci.: Nanosci. Nanotechnol. 2016, 7, 045011.
[20] Enhanced Sensing of Nitric Oxide using a Glassy Carbon Electrode Modified with a Nanocomposite Consisting of Platinum-Tungsten Nanoparticles, Reduced Graphene Oxide and an Ionic Liquid
G. Maduraiveeran, and A. Chen
Microchemica Acta 2016, 183, 2879-2887.[IF:5.7]
[19] Novel Cobalt Quantum Dot/Graphene Nanocomposites As Highly Efficient Electrocatalysts For Water Splitting
G. Maduraiveeran, B. Mao and A. Chen
Nanoscale, 2016, 8, 1485–1492.[IF:7.2]
2015
[18] Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds
B.-R. Adhikari, G. Maduraiveeran and A. Chen
Sensors, 2015, 15, 22490-22508. (Invited Article)[IF:2.4]
[17] Electrical Conductivity Measurements of Bacterial Nanowires From Pseudomonas Aeruginosa
M. Maruthupandy, M. Anand, G. Maduraiveeran, et al.
Adv. Nat. Sci.: Nanosci. Nanotechnol. 2015, 6, 45007-45014.[IF:1.3]
[16] Simultaneous Synthesis of Gold Nanoparticle/Graphene Nanocomposite for Enhanced Oxygen Reduction Reaction
G. Maduraiveeran and A. Chen
J. Power Sources 2015, 274, 928-936.[IF:6.9]
[15] Au nanoparticle/Graphene Nanocomposite as a Platform for the Sensitive Detection of NADH in Human Urine
G. Maduraiveeran, M. Amiri and A. Chen
Biosens. Bioelectron. 2015, 66, 474-480.[IF:8.1]
[14] Sensitive Detection of Acetaminophen with Graphene-Based Electrochemical Sensor
B.-R. Adhikari, G. Maduraiveeran and A. Chen
Electrochimica Acta, 2015, 162, 198-204.[IF:5.1]
[13] Electrochemical Sensor Based on Carbon Nanotubes for the Simultaneous Detection of Phenolic Pollutants
G. Maduraiveeran, T. Lafleur, B.-R. Adhikari and A. Chen
Electroanalysis, 2015, 27, 902-909.[IF:3.0]
[12] Modification of TiO2 Nanotubes with PtRu/Graphene Nanocomposites for Enhanced Oxygen Reduction Reaction
W. Alammari, G. Maduraiveeran and A. Chen
ChemElectroChem, 2015, 2, 2041-2047.[IF:4.4]
2007-2014
[11] Design, Fabrication, and Testing of MEMS-based Miniaturized Potentiometric Nitric Oxide Sensors
C.W. Chang, G. Maduraiveeran, J.C. Xu, G.W. Hunter and P.K. Dutta
Sens. Actuators B: Chemical 2014, 204, 183-189.[IF:5.6]
[10] Nanomaterials-Based Electrochemical Detection of Chemical Contaminants
G. Maduraiveeran, B.-R. Adhikari and A. Chen
RSC Adv., 2014, 4, 63741-63760.[IF:2.9]
[9] Silver Nanoparticles Embedded in Functionalized Silicate Sol-Gel Network Film as Optical Sensor for the Detection of Biomolecules
G. Maduraiveeran and R. Ramaraj
J. Anal. Chem. 2013, 68, 241-248.[IF:6.3]
[8] Nitric Oxide Sensors Using Combination of p- and n-type Semiconducting Oxides and its Application for Detecting NO in Human Breath
C. Sun, G. Maduraiveeran and P.K. Dutta,
Sens. Actuators B: Chemical 2013, 186, 117-125.[IF:5.6]
[7] Silver Nanoparticles Embedded Three Dimensional Silicate Sol-Gel Matrix Modified Electrode for Sensor Application
G. Maduraiveeran, P. Manivasakan and R. Ramaraj
Int. J. Nanotech. 2011, 8, 925-934.[IF:0.4]
[6] Silver Quantum Dots for Selective Detection of Mercuric Ions
G. Maduraiveeran, V. Tamilmani and R. Ramaraj
Curr. Sci. 2011, 100, 199-204.[IF:0.8]
[5] Silver Nanoparticles Embedded in Amine-Functionalized Silicate Sol-Gel Network Assembly for Sensing Cysteine, Adenosine and NADH
G. Maduraiveeran and R. Ramaraj
J. Nanopart. Res. 2011, 13, 4267-4276.[IF:2.0]
[4] Metal Nanoparticles Embedded Polymer Matrix Modified Electrodes for Direct
Electrocatalysis and Electrochemical Sensor
R. Ramaraj and G. Maduraiveeran
in “Nanostructured Materials for Electrochemical Biosensors”, S.-M. Chen (Editor), NOVA Publishers, NY, USA, 2009, ISBN: 978-1-60741-706-4.
[3] Potential Sensing Platform of Silver Nanoparticles Embedded Silicate Shell for Nitroaromatic Compounds
G. Maduraiveeran and R. Ramaraj
Anal. Chem. 2009, 81, 7552-7560.[IF:6.3]
[2] A Facile Electrochemical Sensor Designed from Gold Nanoparticles Embedded in Three-Dimensional Sol-Gel Network for Concurrent Detection of Toxic Chemicals
G. Maduraiveeran and R. Ramaraj
Electrochem. Commun. 2007, 9, 2051-2055.[IF:4.6]
[1] Gold Nanoparticles Embedded in Silica Sol-Gel Matrix as an Amperometric Sensor for Hydrogen Peroxide
G. Maduraiveeran and R. Ramaraj
J. Electroanal. Chem. 2007, 608, 52-58. (HOT ARTICLE)[IF:3.0]