[45] FABBRI G., GOZZI F., SWIECH A (2017). Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations, with Chapter 6 by M. Fuhrman and G. Tessitore. Probability Theory and Stochastic Modelling, vol. 82, XXIII+916 pages. Springer.
An erratum containing a list of misprints is contained here
[44] FABBRI G., FAGGIAN S., FEDERICO S. and GOZZI F. (to appear) Optimal Control in Infinite Dimensional Spaces and Economic Modeling: State of the Art and Perspectives, Mathematical Models and Methods in Applied Sciences, to appear.
[43] FABBRI G., FAGGIAN S. and FRENI G. (2025) Growth Models with Externalities on Networks, Decisions in Economics and Finance, 48:415–436.
[42] FABBRI G., LEROUX M.-L., MELINDI-GHIDI P. and SAS W. (2024) Conditioning Public Pensions on Health: Effects on Capital Accumulation and Welfare, Journal of Population Economics, 37, article 47: 1-21.
[41] FABBRI G., FAGGIAN S. and FRENI G. (2024) On Competition for Spatially Distributed Resources in Networks, Theoretical Economics, 19:743–781.
[40] FABBRI G., FEDERICO S., FIASCHI D. and GOZZI F. (2024) Mobility Decisions, Economic Dynamics and Epidemic, Economic Theory, 77:495–531.
[39] DOBSON A., RICCI C., BOUCEKKINE R., GOZZI F., FABBRI G., LOCH-TEMZELIDES T. and PASCUAL M. (2023) Balancing Economic and Epidemiological Interventions in the Early Stages of Pathogen Emergence, Science Advances, 9(21):eade6169.
[38] BOUCEKKINE R., FABBRI G., FEDERICO S., GOZZI F. (2022). A dynamic theory of spatial externalities. Games and Economic Behavior, 132: 133-165.
[37] BOUCEKKINE R., FABBRI G., FEDERICO S., GOZZI F. (2022). Managing spatial linkages and geographic heterogeneity in dynamic models with transboundary pollution. Journal of Mathematical Economics 98, article 102577
[36] AUGERAUD VERON, E., FABBRI, G. SCHUBERT, K. (2021) Volatility-reducing biodiversity conservation under strategic interactions. Ecological Economics, 190, article 107193
[35] AUGERAUD VERON, E., FABBRI, G. SCHUBERT, K. (2021) Prevention and mitigation of epidemics: biodiversity conservation and confinement policies. Journal of Mathematical Economics, 93, article 102484
[34] FABBRI G., GOZZI, G., ZANCO, A. (2021) Verification results for age-structured models of economic-epidemics dynamics. Journal of Mathematical Economics, 93, article 102455
[33] BOUCEKKINE R., FABBRI G., FEDERICO S., GOZZI F. (2021). Control theory in infinite dimension for the optimal location of economic activity: The role of social welfare function. Pure and applied functional analysis 6(5): 3-23.
[32] MELINDI-GHIDI P. , DEDEURWAERDERE T., FABBRI G. (2020) Using Environmental Knowledge Brokers to Promote Deep Green Agri-environment Measures Ecological Economics 176, article 106722
[31] FABBRI G., FAGGIAN S., FRENI G. (2020) Policy effectiveness in spatial resource wars: a two-region model Journal of Economic Dynamics and Control Volume 111, article 103818
[30] BOUCEKKINE R., FABBRI G., FEDERICO S., GOZZI F. (2020). From firm to global-level pollution control: the case of transboundary pollution. European Journal of Operation Research 290(1):331-345
[29] BOUCEKKINE, R, FABBRI G., FEDERICO S, GOZZI F. (2019) Growth and agglomeration in the heterogeneous space: A generalized AK approach Journal of Economic Geography 19(4): 1287-1318
[28] AUGERAUD VERON, E., FABBRI, G. SCHUBERT, K. (2019) The Value of Biodiversity as an Insurance Device American Journal of Agricultural Economics 101(4): 1068-1081
[27] BOUCEKKINE, R, FABBRI G., FEDERICO S, GOZZI F. (2019) Geographic Environmental Kuznets Curves: the optimal growth linear-quadratic case Mathematical Modelling of Natural Phenomena 14(1):105
[26] BOUCEKKINE, R, FABBRI G., PINTUS, P. (2018) Short-run pain, long-run gain: the conditional welfare gains from international financial integration Economic Theory, 65(2):329-360, 2018.
[25] FABBRI G., RUSSO, F. (2017) HJB equations in infinite dimension and optimal control of stochastic evolution equations via generalized Fukushima decomposition SIAM journal on Control and Optimization, 55(6):4072-4091, 2017.
[24] FABBRI G., FAGGIAN S., FRENI, G. (2017) Non-existence of optimal programs for undiscounted growth models in continuous time Economic Letters, 152(1):57-61, 2017.
[23] FABBRI G., RUSSO, F. (2017) Infinite dimensional weak Dirichlet processes and convolution type processes Stochastic Processes and their Applications, 127(1):325-357, 2017.
[22] FABBRI G. (2017) International borrowing without commitment and informational lags: choice under uncertainty Journal of Mathematical Economics, 68(1):103-114, 2017.
[21] FABBRI G. (2016) Geographical structure and convergence: A note on geometry in spatial growth models Journal of Economic Theory, 162:114-136, 2016. pdf
[20] FABBRI G., FAGGIAN S., FRENI, G. (2015) On the Mitra-Wan model of forestry management in continuous time Journal of Economic Theory, 157:1001-1040, 2015. pdf
[19] BOUCEKKINE R, FABBRI G., GOZZI F. (2014) Egalitarianism under population change: age structure does matter, Journal of Mathematical Economics, 55(1):86-100, 2014. pdf
[18] FABBRI, G., FEDERICO, S. (2014) On the Infinite-Dimensional Representation of Stochastic Controlled Systems with Delayed Control in the Diffusion Term. Mathematical Economics Letter, 2(3-4):11pages, 2014. pdf
[17] DI GIROLAMI C., FABBRI G. RUSSO F (2014). The covariation for Banach space valued processes and applications. Metrika, 77(1):51-104, 2014. pdf
[16] BOUCEKKINE R., FABBRI G. PINTUS P. (2014). Growth and financial liberalization under capital collateral constraints: The striking case of the stochastic AK model with CARA preferences. Economics Letters, 122(2):303-307, 2014. pdf
[15] BOUCEKKINE R, CAMACHO C, FABBRI G (2013). On the optimal control of some parabolic differential equations arising in economics Serdica Mathematical Journal, special issue in honor of Vladimir Veliov, 39(3-4):331-354, 2013. pdf
[14] BOUCEKKINE R, CAMACHO C, FABBRI G (2013). Spatial dynamics and convergence: The spatial AK model} Journal of Economic Theory, 148(6):2719–2736, 2013. pdf
[13] DI MAIO M, FABBRI G (2013) Product boycott, household heterogeneity and child labor Journal of Population Economics, 26(4):1609–1630, 2013. pdf
[12] BOUCEKKINE R, FABBRI G. (2013). Assessing Parfit's Repugnant Conclusion within a canonical endogenous growth set-up. Journal of Population Economics 26(2); p 761-767. pdf
[11] BOUCEKKINE R., FABBRI G. PINTUS P. (2012). On the optimal control of a linear neutral differential equation arising in economics. Optimal control applications and methods 33(5); p 511-530. pdf
[10] BAMBI M, FABBRI G., GOZZI F (2012). Optimal policy and consumption smoothing effects in the time-to-build AK model. Economic Theory 50(3); p 635-669. pdf
[9] BOUCEKKINE R, FABBRI G., GOZZI F (2011). Revisiting the optimal population size problem under endogenous growth: minimal utility level and finite life. Asia-Pacific Journal of Accounting & Economics (special issue edited by Kazuo Nishimura), 18(3); p 287-306. pdf
[8] BOUCEKKINE R, FABBRI G., GOZZI F (2010) Maintenance and Investment: Complements or Substitutes? A Reappraisal. Journal of Economic Dynamics and Control 34(12); p 2420-2439. pdf
[7] FABBRI G., GOZZI F., SWIECH A (2010). Verification theorem and construction of epsilon-optimal controls for control of abstract evolution equations. Journal of Convex Analysis 17(2); p 611-642. pdf
[6] FABBRI G., GOLDYS B (2009). An LQ problem for the heat equation on the half-line with Dirichlet boundary control and noise. SIAM Journal on Control and Optimization, 48(3); p 1473-1488. pdf
[5] FABBRI G. (2008). Viscosity solution approach to the infinite dimensional HJB related to boundary control problem in transport equation. SIAM Journal on Control and Optimization, vol. 47(2); p. 1022-1052. pdf
[4] FABBRI G. (2008). Viscosity solutions to delay differential equations in demo-economy. Mathematical Population Studies, vol. 15(1); p. 27-54. pdf
[3] FABBRI G., GOZZI F (2008). Solving optimal growth models with vintage capital: The dynamic programming approach. Journal of Economic Theory, vol. 143(1); p. 331-373, pdf
[2] FABBRI G., S. FAGGIAN, F. GOZZI (2008). On the Dynamic Programming approach to economic models governed by DDE's. Mathematical Population Studies, vol. 15(4); p. 267-290, pdf
[1] [in collection] FABBRI G. (2007). A dynamic programming approach in Hilbert spaces for a family of applied delay optimal control problems. In: Free and Moving Boundaries: Analysis, Simulation and Control. Dekker/CRC Press, vol. 252, p. 375-394. pdf
An infinite dimensional approach for an arbitrage-free implied volatilities model [with Alan Brace and Benjamin Goldys]
Heterogenous entrepreneurs, government quality and the effectiveness of industrial policy [with Michele di Maio and Vincenzo Lombardo]
Risk sharing and growth in small open economies [with Raouf Boucekkine and Patrick Pintus]