Fukunaga Lab

Johns Hopkins University School of Medicine

Department of Biological Chemistry

Studying RNA-binding proteins and small silencing RNAs

Home Projects About the PI People Photos Publications Positions available Contact

Publications

42. RNA-binding protein Maca is crucial for gigantic male fertility factor gene expression, spermatogenesis, and male fertility, in Drosophila

Zhu L, Fukunaga R

PLoS Genetics. 17(6): e1009655. (2021)

Pubmed | Full text | PDF


41. Differences in molecular phenotype in mouse and human hypertrophic cardiomyopathy

Vakrou S, Liu Y, Zhu L, Greenland GV, Simsek B, Hebl VB, Guan Y, Woldemichael K, Talbot CC Jr, Aon MA, Fukunaga R, Abraham MR

Scientific Reports. 11: 13163 (2021)

Pubmed | Full text | PDF


40. Differences in microRNA-29 and Pro-fibrotic Gene Expression in Mouse and Human Hypertrophic Cardiomyopathy

Liu Y, Afzal J, Vakrou S, Greenland GV, Talbot CC Jr, Hebl VB, Guan Y, Karmali R, Tardiff JC, Leinwand LA, Olgin JE, Das S, Fukunaga R, Abraham MR

Frontiers in Cardiovascular Medicine. 6:170. (2019)

Pubmed | Full text | PDF


39. Drosophila Regnase-1 RNase is required for mRNA and miRNA profile remodeling during larva-to-adult metamorphosis

Zhu L, Liao ES, Fukunaga R

RNA Biology. 16(10):1386-1400. (2019)

Pubmed | Full text | PDF


38. RNA methyltransferase BCDIN3D is crucial for female fertility and miRNA and mRNA profiles in Drosophila ovaries

Zhu L, Liao ES, Ai Y, Fukunaga R

PLOS ONE. 14(5): e0217603 (2019)

Pubmed | Full text | PDF


37. DEAD-box RNA helicase Belle post-transcriptionally promotes gene expression in an ATPase activity-dependent manner

Liao ES, Kandasamy SK, Zhu L, Fukunaga R

RNA. 25: 825-839 (2019)

Pubmed | Full text | PDF


36. LOTUS domain protein MARF1 binds CCR4-NOT deadenylase complex to post-transcriptionally regulate gene expression in oocytes

Zhu L, Kandasamy SK, Liao ES, Fukunaga R

Nature Communications. 9(1):4031 (2018)

Pubmed | Full text | PDF


35. An RNA-binding protein Blanks plays important roles in defining small RNA and mRNA profiles in Drosophila testes

Liao ES, Ai Y, Fukunaga R

Heliyon. 4 e00706 (2018)

Pubmed | Full text | PDF


34. Allele-specific differences in transcriptome, miRNome, and mitochondrial function in two hypertrophic cardiomyopathy mouse models

Vakrou S, Fukunaga R, Foster DB, Sorensen L, Liu Y, Guan Y, Woldemichael K, Pineda-Reyes R, Liu T, Jill C. Tardiff JC, Leinwand LA, Tocchetti CG, Abraham TP, Brian O’Rourke B, Aon MA, Abraham MR

JCI Insight. 3(6): e94493 (2018)

Pubmed | Full text | PDF


33. Dicer-2 partner protein Loquacious-PD allows hairpin RNA processing into siRNAs in the presence of inorganic phosphate

Fukunaga R.

Biochemical and Biophysical Research Communications. 498: 1022–1027 (2018)

Pubmed | Full text | PDF


32. Dicer partner protein tunes the length of miRNAs using base-mismatch in the pre-miRNA stem

Zhu L, Kandasamy SK, Fukunaga R.

Nucleic Acid Research. 46, 3726-3741, (2018)

Pubmed | Full text | PDF


31. Kinetic Analysis of Small Silencing RNA Production by Human and Drosophila Dicer Enzymes In Vitro.

Liao SE, Fukunaga R.

Methods Mol Biol. 1680:101-121 (2018)

Pubmed | Full text | PDF

30. The C-terminal dsRNA-binding domain of Drosophila Dicer-2 is crucial for efficient and high-fidelity production of siRNA and loading of siRNA to Argonaute2

Kandasamy SK, Zhu L, Fukunaga R

RNA, 23, 1139-1153, (2017)

Pubmed | Full text | PDF


29. Phosphate-binding pocket in Dicer-2 PAZ domain for high-fidelity siRNA production

Kandasamy SK, Fukunaga R.

Proc. Natl. Acad. Sci. U S A. 113(49):14031-14036, (2016)

Pubmed | Full text | PDF


28. Common MiR-590 Variant rs6971711 present only in African Americans reduces miR-590 biogenesis

Lin X*, Steinberg S, Kandasamy S, Afzal J, Mbiyangandu B, Liao S, Guan Y, Corona-Villalobos C, Matkovich S, Epstein N, Tripodi D, Huo Z, Cutting G, Abraham T, Fukunaga R, Abraham R

PLoS ONE. 11(5): e0156065. (2016)

Pubmed | Full text | PDF


27. A SelB/EF-Tu/aIF2γ-like protein from Methanosarcina mazei in the GTP-bound form binds cysteinyl-tRNACys

Yanagisawa T, Ishii R, Hikida Y, Fukunaga R, Sengoku T, Sekine SI, Yokoyama S,

J. Struct. Funct. Genomics. 16, 25-41, (2015)

Pubmed | Full text | PDF


26. A universal small molecule, inorganic phosphate, restricts the substrate specificity of Dicer-2 in small RNA biogenesis

Fukunaga R, Zamore PD

Cell Cycle. 13(11):1671-6. (2014)

Pubmed | Full text | PDF


25. Inorganic phosphate blocks binding of pre-miRNA to Dicer-2 via its PAZ domain

Fukunaga R, Colpan C, Han BW, Zamore PD,

EMBO Journal, 18, 371-84, (2014)

Pubmed | Full text | PDF




Before 2013 (Fukunaga lab started in 2013)

24. Dicer Partner Proteins Tune the Length of Mature miRNAs in Flies and Mammals

Fukunaga R, Han BW, Hung JH, Xu J, Weng Z, Zamore PD

Cell, 151, 533-46, (2012)

Pubmed | Full text | PDF

23. Phosphate and R2D2 Restrict the Substrate Specificity of Dicer-2, an ATP-Driven Ribonuclease

Cenik ES, Fukunaga R, Lu G, Dutcher R, Wang Y, Tanaka Hall TM, Zamore PD

Mol. Cell, 42, 172-84, (2011)

Pubmed | Full text | PDF

22. Unique protein architecture of alanyl-tRNA synthetase for aminoacylation, editing, and dimerization

Naganuma M, Sekine SI, Fukunaga R, Yokoyama S

Proc. Natl. Acad. Sci., 106, 8489-94, (2009)

Pubmed | Full text | PDF

21. dsRNA with 5¢ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants

Fukunaga R, Doudna JA,

EMBO J., 28, 545-55, (2009)

Pubmed | Full text | PDF

20. Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode Ne-(o-Azidobenzyloxycarbonyl) lysine for site-specific protein modification

Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S

Chem. Biol., 15, 1187-97, (2008)

Pubmed | Full text | PDF


19. Phosphoserine aminoacylation of tRNA bearing an unnatural base anticodon

Fukunaga R, Harada Y, Hirao I, Yokoyama S

Biochem Biophys Res Commun., 1, 372, 480-5, (2008)

Pubmed | Full text | PDF


18. Crystallographic studies on multiple conformational states of active-site loops in pyrrolysyl-tRNA synthetase

Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S

J. Mol. Biol., 2, 378, 634-52, (2008)

Pubmed | Full text | PDF

17. Structural insights into the second step of RNA-dependent cysteine biosynthesis in archaea: crystal structure of Sep-tRNA:Cys-tRNA synthase from Archaeoglobus fulgidus

Fukunaga R, Yokoyama S

J. Mol. Biol., 29, 370, 128-41, (2007)

Pubmed | Full text | PDF


16. The C-terminal domain of the archaeal leucyl-tRNA synthetase prevents misediting of isoleucyl-tRNAIle

Fukunaga R, Yokoyama S

Biochemistry, 1, 46, 4985-96, (2007)

Pubmed | Full text | PDF

15. Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea. Structural basis of phosphoserine ligation to tRNA for genetic code evolution

Fukunaga R, Yokoyama S

Nat. Struct. Mol. Biol., 14, 272-9, (2007)

Pubmed | Full text | PDF


14. Crystallization and preliminary X-ray crystallographic study of alanyl-tRNA synthetase from the archaeon Archaeoglobus fulgidus

Fukunaga R, Yokoyama S

Acta Crystallogr. F, 63, 224-8, (2007)

Pubmed | Full text | PDF

13. Structure of the AlaX-M trans-editing enzyme from Pyrococcus horikoshii

Fukunaga R, Yokoyama S

Acta Crystallogr. D, 63, 390-400, (2007)

Pubmed | Full text | PDF

12. Crystallization and preliminary X-ray crystallographic analysis of the catalytic domain of pyrrolysyl-tRNA synthetase from the Methanogenic archaeon Methanosarcina mazei

Yanagisawa T, Ishii R, Fukunaga R, Nureki O, Yokoyama S

Acta Crystallogr. F, 62, 1031-3, (2006)

Pubmed | Full text | PDF

11. Structural and mutational studies of the amino acid-editing domain from archaeal/eukaryal phenylalanyl-tRNA synthetase

Sasaki H, Sekine S, Sengoku T, Fukunaga R, Hattori M, Utsunomiya Y, Kuroishi C, Kuramitsu S, Shirouzu M, Yokoyama S

Proc. Natl. Acad. Sci. 103, 14744-9, (2006)

Pubmed | Full text | PDF


10. Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase

Fukunaga R, Yokoyama S

J. Mol. Biol. 359, 901-12, (2006)

Pubmed | Full text | PDF


9. Crystal structure of tRNA adenosine deaminase TadA from Aquifex aeolicus

Kuratani M, Ishii R, Bessho Y, Fukunaga R, Sengoku T, Sekine S, Shirouzu M, Yokoyama S

J. Biol. Chem., 280, 16002-16008, (2005)

Pubmed | Full text | PDF

8. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation

Tukalo M, Yaremchuk A, Fukunaga R, Yokoyama S, Cusack S

Nat. Struct. Mol. Biol. 12, 923-930, (2005)

Pubmed | Full text | PDF


7. Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator base recognition for 3¢-end relocation toward the editing domain

Fukunaga R, Yokoyama S

Nat. Struct. Mol. Biol. 12, 915-922, (2005)

Pubmed | Full text | PDF


6. Structural basis for non-cognate amino acid discrimination by the valyl-tRNA synthetase editing domain

Fukunaga R, Yokoyama S

J. Biol. Chem. 280, 29937-29945, (2005)

Pubmed | Full text | PDF


5. Crystallization of Leucyl-tRNA synthetase complexed with tRNALeu from the archaeon Pyrococcus horikoshii

Fukunaga R, Ishitani R, Nureki O, Yokoyama S

Acta Crystallogr. F, 61, 30-32, (2005).

Pubmed | Full text | PDF


4. Crystal Structure of Leucyl-tRNA Synthetase from the Archaeon Pyrococcus horikoshii Reveals a novel editing domain orientation

Fukunaga R, Yokoyama S

J. Mol. Biol. 346, 57-71, (2005).

Pubmed | Full text | PDF


3. Crystallization and preliminary X-ray crystallographic study of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii

Fukunaga R, Yokoyama S

Acta Crystallogr. D, 60, 1916-1918, (2004)

Pubmed | Full text | PDF

2. Crystallization and preliminary X-ray crystallographic study of the editing domain of Thermus thermophilus isoleucyl-tRNA synthetase complexed with pre- and post-transfer editing-substrate analogues

Fukunaga R, Yokoyama S

Acta Crystallogr. D, 60, 1900-1902, (2004)

Pubmed | Full text | PDF

1. Crystal Structures of the CP1 Domain from Thermus thermophilus Isoleucyl-tRNA synthetase and Its Complex with l-Valine

Fukunaga R, Fukai S, Ishitani R, Nureki O, Yokoyama S

J. Biol. Chem. 279, 8396-8402, (2004)

Pubmed | Full text | PDF