Research
Research topics: Geometric Analysis, Isoperimetric inequalities, Sub-Riemannian geometry, Subelliptic operators, Cortically inspired modelling for vision.
Publications
V. Franceschi, K. Naderi, and K. Pankrashkin, Embedded trace operator for infinite metric trees. accepted on Mathematische Nachrichten [arXiv]
V. Franceschi, R. Monti, and A. Socionovo, Mean value formulas on surfaces in Grushin spaces. Annales Fennici Mathematici, 49(1), 241–255. [arXiv] (doi)
V. Franceschi, A. Pinamonti, G. Saracco, G. Stefani, The Cheeger problem in abstract measure spaces. accepted on J. London Math. Society [arXiv] (doi)
U. Boscain, D. Cannarsa, V. Franceschi, M. Sigalotti, Local controllability does imply global controllability. accepted on Comptes Rendus Mathématique. Académie des Sciences. Paris [arXiv] (doi)
V. Franceschi, A. Pratelli, G. Stefani, On the Steiner property for planar minimizing clusters. The anisotropic case. J. Éc. polytech. Math., vol. 10, pp. 989–1045, 2023 [arXiv] (doi)
B. Cassano, V. Franceschi, D. Krejčiřík, D. Prandi, Horizontal magnetic fields and improved Hardy inequalities in the Heisenberg group. Comm. Partial Differential Equations, 48(5):711–752, 2023 [arXiv] (doi)
V. Franceschi, R. Monti, A. Righini, M. Sigalotti, The isoperimetric problem for regular and crystalline norms in H^1. J. Geom. Anal. vol. 33, no. 1, pp. Paper No. 8, 40, 2023. [arXiv] (doi)
V. Franceschi, A. Pratelli, G. Stefani, On the Steiner property for planar minimizing clusters. The isotropic case. Communications in Conteporary Mathematics 25(5):Paper No. 2250040, 29, 2023 [arXiv] (doi)
E. Baspinar, L. Calatroni, V. Franceschi, D. Prandi; A cortical-inspired sub-Riemannian model for Poggendorff-type visual illusions, Journal of Imaging. (2021); 7(3):41 [arXiv] (doi)
R. Adami, U. Boscain, V. Franceschi, D. Prandi; Point interactions for 3D sub-Laplacians. Annales IHP C - Analyse Nonlinéaire vol. 38 (2021), no. 4, 1095–1113. [arXiv] (doi)
M. Bertalmio, L. Calatroni, V. Franceschi, B. Franceschiello, D. Prandi; Cortical-inspired Wilson-Cowan-type equations for orientation-dependent contrast perception modelling. Journal of Mathematical Imaging and Vision 63, 263–281 (2021) [arXiv] (doi)
V. Franceschi, D. Prandi; Hardy-type inequalities for the Carnot-Carathéodory distance in the Heisenberg group. J. Geom. Anal. 31 (2021), no. 3, 2455–2480. [arXiv] (doi)
M. Bertalmio, L. Calatroni, V. Franceschi, B. Franceschiello, A. Gomez Villa, D. Prandi; Visual illusions via neural dynamics: Wilson-Cowan-type models and the efficient representation principle. Journal of Neurophysiology (2020) 123:5, 1606-1618 [arXiv] (doi)
V. Franceschi, F. Montefalcone, R. Monti; CMC spheres in the Heisenberg group. Analysis and Geometry in metric spaces 7 (2019), no. 1, 109–129. [arXiv] (doi)
M. Bertalmio, L. Calatroni, V. Franceschi, B. Franceschiello, D. Prandi; A cortical-inspired model for orientation-dependent contrast perception: a link with Wilson-Cowan equations. SSVM Conference Proceedings, LNCS, Springer (2019). [arXiv] (doi)
V. Franceschi, D. Prandi, L. Rizzi; Recent results on the essential self-adjointness of sub-Laplacians, with some remarks on the presence of characteristic points. Séminaire de Théorie spectrale et géométrie (Grenoble), 33 (2015-2016), p. 1-15, [.pdf] (doi)
V. Franceschi, G. Stefani; Symmetric double bubbles in the Grushin plane. ESAIM Control Optimization Calc. Var., 25 (2019) 77 [arXiv] (doi)
V. Franceschi, D. Prandi, L. Rizzi; On the essential self-adjointness of sub-Laplacians. Potential Anal. (2019) [arXiv] (doi)
V. Franceschi; The isoperimetric problem in Carnot-Carathéodory spaces. Bruno Pini Analysis Seminar [S.l.], p. 102-120, may 2018. [.pdf] (doi)
V. Franceschi; A minimal partition problem with trace constraint in the Grushin plane. Calc. Var. Partial Differential Equations, 56 (2017), no. [4] [arXiv] (doi)
V. Franceschi, and R. Monti; The isoperimetric problem in H-type groups and Grushin spaces, Rev. Mat. Iberoam., 32 (2016), no. [4], 1227-1258. [arXiv] (doi)
V. Franceschi , G.P. Leonardi, and R. Monti; Quantitative isoperimetric inequality in Heisenberg groups, Calc. Var. Partial Differential Equations, 54 (2015), no. [3] 3229-3239 [arXiv] (doi)
Academic works:
V. Franceschi, Sharp and quantitative isoperimetric inequalities in Carnot-Carathéodory spaces [PhD. Thesis] [Dissertation slides]
Other:
V. Franceschi, Isoperimetric Inequalities in Carnot-Carathéodory spaces: from the De Giorgi definition of perimeter to metric geometry. Seminario Dottorato, University of Padova, 2016. [.pdf]
Some works in progress:
Bifurcation analysis for sub-Riemannian Wilson-Cowan models (with D. Avitabile, E. Baspinar, L.Calatroni, D. Prandi)
Regularity of minimal surfaces in Grushin spaces (in collaboration with R. Monti, A. Socionovo, G. Stefani)
Existence and regularity of anisotropic minimal clusters (in collaboration with A. Pratelli, G. Stefani)
Characterization of double bubbles in the Grushin plane (in collaboration with A. Pratelli, G. Stefani)
Hardy inequalities for homogeneous cones in Grushin spaces (in collaboration with N. Garofalo, D. Prandi)
Magnetic heat decay in the Heisenberg group (in collaboration with B. Cassano, D. Krejčirík, D. Prandi)
Find me on
I acknowledge the support received from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 794592, Project MesuR - Metric Mesur Inequalities in Sub-Riemannian Manifolds.
At this link an interview for Inria on the research project.