Journal publications
I.B.C.M. Rocha, P. Kerfriden, and F.P. van der Meer. Machine learning of evolving physics-based material models for multiscale solid mechanics. Mech Mater, 184:104707, 2023. [doi]
M. Maia, I.B.C.M. Rocha, P. Kerfriden, and F.P. van der Meer. Physically recurrent neural networks for path-dependent heterogeneous materials: Embedding constitutive models in a data-driven surrogate. Comput Method Appl Mech Eng, 407:115934, 2023. [doi ]
D. Kovačević, BK Sundararajan, and F.P. van der Meer. Microscale modeling of rate-dependent failure in thermoplastic composites under off-axis loading. Eng Fract Mech, 276B:108884, 2022. [doi ]
P. Hofman, L. Ke, and F.P. van der Meer. Circular Representative Volume Elements for Strain Localization Problems. Int J Numer Method Eng, 124:784–807, 2022. [doi]
D. Kovačević and F.P. van der Meer. Strain-rate based arclength model for nonlinear microscale analysis of unidirectional composites under off-axis loading. Int J Solids Struct, 250:111697, 2022. [doi]
LAT Mororó, A Poot, and F.P. van der Meer. Skeleton curve and phantom node method for the Thick Level Set approach to fracture. Eng Fract Mech, 268:108443, 2022. [doi]
L. Ke and F.P. van der Meer. A computational homogenization framework with enhanced localization criterion for macroscopic cohesive failure in heterogeneous materials. J Theor Comput Appl Mech, page 7707, 2022. [doi]
L.A.T. Mororó and F.P. van der Meer. Parallel computing with the thick level set method. SIAM J Sci Comput, 43:C386–C410, 2021. [doi]
T.R. van Woudenberg and F.P. van der Meer. A grouping method for optimization of steel skeletal structures by applying a combinatorial search algorithm based on a fully stressed design. Eng Struct, 249:113299, 2021. [doi]
R. Dekker, F.P. van der Meer, J. Maljaars, and L.J. Sluys. A cohesive XFEM model for simulating fatigue crack growth under various load conditions. Eng Fract Mech, 248:107688, 2021. [doi]
Y. Liu, F.P. van der Meer, L.J. Sluys, and L. Ke. Modeling of dynamic mode I crack growth in glass fiber-reinforced polymer composites: Fracture energy and failure mechanism. Eng Fract Mech, 243:107522, 2021. [doi]
R. Dekker, F.P. van der Meer, J. Maljaars, and L.J. Sluys. A level set model for stress dependent corrosion pit propagation. Int J Numer Method Eng, 122:2057-2074, 2021. [doi]
I.B.C.M. Rocha, P. Kerfriden, and F.P. van der Meer. On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. J Comput Ph X, 9:100083, 2021. [doi]
Y. Liu, F.P. van der Meer, L.J. Sluys, and J.T. Fan. A numerical homogenization scheme used for derivation of a homogenized viscoelastic-viscoplastic model for the transverse response of fiber-reinforced polymer composites. Compos Struct, 252:112690, 2020. [doi]
E. Giesen Loo and F.P. van der Meer. Stress-controlled weakly periodic boundary conditions: axial stress under varying orientations. Int J Numer Method Eng, 121:4458–4470, 2020. [doi]
I.B.C.M. Rocha, P. Kerfriden, and F.P. van der Meer. Micromechanics-based surrogate models for the response of composites: A critical comparison between a classical mesoscale constitutive model, hyper-reduction and neural networks. Eur J Mech Solids, 82:103995, 2020. [doi]
I.B.C.M. Rocha, F.P. van der Meer, L.A.T. Mororó, and L.J. Sluys. Accelerating crack growth simulations through adaptive model order reduction. Int J Numer Method Eng, 121:2147-2173, 2020. [doi]
I.B.C.M. Rocha, F.P. van der Meer, and L.J. Sluys. An adaptive domain-based POD/ECM hyper-reduced modeling framework without offline training. Comput Method Appl Mech Eng, 358:112650, 2020. [doi]
L.A.T. Mororó and F.P. van der Meer. Combining the thick level set method with plasticity. Eur J Mech Solids, 79:103857, 2020. [doi]
A. Arefi, F.P. van der Meer, M.R. Forouzan, M. Silani, and M. Salimi. Micromechanical evaluation of failure models for unidirectional fiber-reinforced composites. J Compos Mater, 56:791-800, 2020. [doi]
Y. Liu, F.P. van der Meer, and L.J. Sluys. A dispersive homogenization model for composites and its RVE existence. Comput Mech, 65:79-98, 2020. [doi]
I.B.C.M. Rocha, F.P. van der Meer, S. Raijmaekers, F. Lahuerta, R.P.L. Nijssen, and L.J. Sluys. Numerical/experimental study of the monotonic and cyclic viscoelastic/viscoplastic/fracture behavior of an epoxy resin. Int J Solids Struct, 168:153-165, 2019. [doi]
F.P. van der Meer, I.B.C.M. Rocha, and S. Raijmaekers. Interpreting the single fiber fragmentation test with numerical simulations. Compos Part A, 118:259–266, 2019. [doi]
R. Dekker, F.P. van der Meer, J. Maljaars, and L.J. Sluys. A cohesive XFEM model for simulating fatigue crack growth under mixed-mode loading and overloading. Int J Numer Method Eng, 118:561–577, 2019. [doi]
I.B.C.M. Rocha, F.P. van der Meer, and L.J. Sluys. Efficient micromechanical analysis of fiber-reinforced composites subjected to cyclic loading through time homogenization and reduced-order modeling. Comput Method Appl Mech Eng, 345:644–670, 2019. [doi]
I.B.C.M. Rocha, F.P. van der Meer, S. Raijmaekers, F. Lahuerta, R.P.L. Nijssen, L.P. Mikkelsen, and L.J. Sluys. A combined experimental/numerical investigation on hygrothermal aging of fiber-reinforced composites. Eur J Mech Solids, 73:407–419, 2019. [doi]
Y. Liu, F.P. van der Meer, and L.J. Sluys. Cohesive zone and interfacial thick level set modeling of the dynamic double cantilever beam test of composite laminate. Theor Appl Frac Mech, 96:617–630, 2018. [doi]
A. Arefi, F.P. van der Meer, M.R. Forouzan, and M. Silani. Formulation of a consistent pressure-dependent damage model with fracture energy as input. Compos Struct, 201:208–216, 2018. [doi]
S. Mostofizadeh, F.P. van der Meer, M. Fagerström, L.J. Sluys, and R. Larsson. An element subscale refinement for representation of the progressive fracture based on the phantom node approach. Comput Struct, 196:134–145, 2018. [doi]
G. Catalanotti, C. Furtado, T. Scalici, G. Pitarresi, F.P. van der Meer, and P.P. Camanho. The effect of through-thickenss compressive stress on mode II interlaminar fracture toughness. Compos Struct, 182:153–163, 2017. [doi]
I.B.C.M. Rocha, S. Raijmaekers, F.P. van der Meer, R.P.L. Nijssen, H.R. Fischer, and L.J. Sluys. Combined experimental/numerical investigation of directional moisture diffusion in glass/epoxy composites. Compos Sci Technol, 151:16–24, 2017. [doi]
L.O. Voormeeren, F.P. van der Meer, J. Maljaars, and L.J. Sluys. A new method for fatigue life prediction based on the Thick Level Set approach. Eng Fract Mech, 182:449–466, 2017. [doi]
M. Latifi, F.P. van der Meer, and L.J. Sluys. Fatigue modeling in composites with the thick level set interface method. Compos Part A, 101:72–80, 2017. [doi]
I.B.C.M. Rocha, S. Raijmaekers, F.P. van der Meer, R.P.L. Nijssen, and L.J. Sluys. Hygrothermal ageing behaviour of a glass/epoxy composite used in wind turbine blades. Compos Struct, 174:110–122, 2017. [doi]
I.B.C.M. Rocha, F.P. van der Meer, R.P.L. Nijssen, and L.J. Sluys. A multiscale and multiphysics numerical framework for modelling of hygrothermal ageing in laminated composites. Int J Numer Method Eng, 112:360-379, 2017. [doi]
M. Latifi, F.P. van der Meer, and L.J. Sluys. An interface thick level set model for simulating delamination in composites. Int J Numer Method Eng, 111:303-324, 2017. [doi]
A. Amiri-Rad, M. Mashayekhi, and F.P. van der Meer. Cohesive zone and level set method for simulation of high cycle fatigue delamination in composite materials. Compos Struct, 160:61-69, 2017. [doi]
F. Lahuerta, R.P.L. Nijssen, F.P. van der Meer, and L.J. Sluys. The influence of curing cycle and through thickness variability of properties in thick laminates. J Compos Mater, 51:563-575, 2017. [doi]
T. Scalici, G. Pitarresi, G. Catalanotti, F.P. van der Meer, and A. Valenza. The Transverse Crack Tension tests revisited: an experimental and numerical study. Compos Struct, 158:144-159, 2016. [doi]
F.P. van der Meer. Micromechanical validation of a mesomodel for plasticity in composites. Eur J Mech Solids, 60:58-69, 2016. [doi]
F. Lahuerta, R.P.L. Nijssen, F.P. van der Meer, and L.J. Sluys. Thickness scaled compression tests in unidirectional glass fibre reinforced composites in static and fatigue loading. Compos Sci Technol, 123:115–124, 2016. [doi]
A. Amiri-Rad, M. Mashayekhi, F.P. van der Meer, and H. Hadavinia. A two-scale damage model for high cycle fatigue delamination in laminated composites. Compos Sci Technol, 120:32–38, 2015 . [doi]
M. Latifi, F.P. van der Meer, and L.J. Sluys. A level set model for simulating fatigue-driven delamination in composites. Int J Fatigue, 80:434–442, 2015. [doi]
F. Lahuerta, R.P.L. Nijssen, F.P. van der Meer, and L.J. Sluys. Experimental-computational study towards heat generation in thick laminates under fatigue loading. Int J Fatigue, 80:121–127, 2015. [doi]
W. Steenstra, F.P. van der Meer, and L.J. Sluys. An efficient approach to the modeling of compressive transverse cracking in composite laminates. Compos Struct, 128:115–121, 2015. [doi]
F.P. van der Meer and L.J. Sluys. The Thick Level Set method: Sliding deformations and damage initiation. Comput Method Appl Mech Eng, 285:64–82, 2015. [doi]
F. Lahuerta, T. Westphal, R.P.L. Nijssen, F.P. van der Meer, and L.J. Sluys. Measuring the delamination length in static and fatigue mode I tests using video image processing. Compos Part B, 63:1–7, 2014. [doi]
J. Jaskowiec and F.P. van der Meer. A consistent iterative scheme for 2D and 3D cohesive crack analysis in XFEM. Comput Struct, 136:98–107, 2014. [doi]
F.P. van der Meer and L.J. Sluys. A numerical investigation into the size effect in the transverse crack tensile test for mode II delamination. Compos Part A, 54:145-152, 2013. [doi]
F.P. van der Meer and C.G. Dávila. Cohesive modeling of transverse cracking in laminates under in-plane loading with a single layer of elements per ply. Int J Solids Struct. 50:3308-3318, 2013. [doi]
F.P. van der Meer. Mesolevel Modeling of Failure in Composite Laminates: Constitutive, Kinematic and Algorithmic Aspects. Archiv Comput Method Eng. 19:381-425, 2012. [doi]
F.P. van der Meer, L.J. Sluys, and N. Moës. Towards efficient and robust computation of the energy release rate and mode mix for delamination growth. Compos Part A. 43:1101-1112, 2012. [doi]
F.P. van der Meer, N. Moës, and L.J. Sluys. A level set model for delamination — Modeling crack growth without cohesive zone or stress singularity. Eng Fract Mech. 79:191-212, 2012. [doi]
A. Ahmed, F.P. van der Meer, and L.J. Sluys. A geometrically nonlinear discontinuous solid-like shell element (DSLS) for thin shell structures. Comput Method Appl Mech Eng, 201-204:191–207, 2012. [doi]
F.P. van der Meer, L.J. Sluys, S.R. Hallett, and M.R. Wisnom. Computational modeling of complex failure mechanisms in laminates. J Compos Mater, 46:603–623, 2012. [doi]
F.P. van der Meer, C. Oliver, and L.J. Sluys. Computational analysis of progressive failure in a notched laminate including shear nonlinearity and fiber failure. Compos Sci Technol, 70:692–700, 2010. [doi]
F.P. van der Meer and L.J. Sluys. Mesh-independent modeling of both distributed and discrete matrix cracking in interaction with delamination. Eng Fract Mech, 77:719–735, 2010. [doi]
F.P. van der Meer and L.J. Sluys. A phantom node formulation with mixed mode cohesive law for splitting in laminates. Int J Fract, 158:107–124, 2009. [doi]
F.P. van der Meer and L.J. Sluys. Continuum models for the analysis of progressive failure in composite laminates. J Compos Mater, 43:2131–2156, 2009. [doi]
F.P. van der Meer, R. Al-Khoury, and L.J. Sluys. Time-dependent shape functions for modeling highly transient geothermal systems. Int J Numer Method Eng, 77:240–260, 2009. [doi]
Book chapters
F.P. van der Meer. A level set model for delamination in composite materials. In S.R. Hallett and P.P. Camanho, editors, Numerical Modeling of Failure in Advanced Composite Materials, pages 93–107. Woodhead, 2015.
F.P. van der Meer and L.J. Sluys. Simulation of progressive failure in laminates. In B. Koren and C. Vuik, editors, Advanced Computational Methods in Science and Engineering, pages 343–371. Springer, 2009. [doi]
F.P. van der Meer and L.J. Sluys. Interaction between intraply and interply failure in laminates. In P. P. Camanho et al., editors, Mechanical Response of Composites, pages 141–160. Springer, 2008. [doi]
PhD thesis
F.P. van der Meer. Computational Modeling of Failure in Composite Laminates. PhD Thesis. Delft University of Technology, 2010. [tudelft.nl]
Citation metrics on google scholar and scopus. Most recent papers are open access. For those that are not, I answer full-text requests through researchgate.