Possibly nonstationary cross-validation (with Valentina Corradi and Daniel Wilhelm) (SSRN draft)
Cross-validation is the most common data-driven procedure for choosing smoothing parameters in nonparametric regression. For the case of kernel estimators with iid or strong mixing data, it is well-known that the bandwidth chosen by cross-validation is optimal with respect to the average squared error and other performance measures. In this paper, we show that the cross-validated bandwidth continues to be optimal with respect to the average squared error even when the data-generating process is a beta-recurrent Markov chain. This general class of processes covers stationary as well as nonstationary Markov chains. Hence, the proposed procedure adapts to the degree of recurrence, thereby freeing the researcher from the need to assume stationary (or nonstationary) before inference begins. We study finite sample performance in a Monte Carlo study. We conclude by demonstrating the practical usefulness of cross-validation in a highly-persistent environment, namely that of nonlinear predictive systems for market returns.
Nonparametric nonstationarity tests (with Valentina Corradi) (paper)
Econometric Theory, 2014, 30, 127-149
We propose additive functional-based nonstationarity tests which exploit the different divergence rates of the occupation times of a (possibly nonlinear) process under the null of nonstationarity (stationarity) versus the alternative of stationarity (nonstationarity). We consider both discrete-time series and continuous-time processes. The discrete-time case covers Harris recurrent Markov chains and integrated processes. The continuous-time case focuses on Harris recurrent diffusion processes. The proposed tests are simple to implement and rely on tabulated critical values. Simulations show that their size and power properties are satisfactory. Our robustness to nonlinear dynamics provides a solution to the typical inconsistency problem between assumed linearity of a time series for the purpose of nonstationarity testing and subsequent nonlinear inference.