(Lincoln, Reino Unido, 1815 - Ballintemple, actual Irlanda, 1864) Matemático británico, creador de un nuevo sistema de cálculo lógico que póstumamente sería llamado Álgebra de Boole. Dicho sistema, en el que las proposiciones se reducen a símbolos sobre los que puede operarse matemáticamente, supuso un avance fundamental en el desarrollo de la lógica y, más de un siglo después, hallaría un formidable e insospechado campo de aplicación en la informática y los microprocesadores, cuyo funcionamiento se basa en la lógica binaria de Boole.
El álgebra de Boole
Esta forma de cálculo desarrollada por George Boole es un sistema mediante el cual ciertos razonamientos lógicos pueden expresarse en términos matemáticos. Los elementos del álgebra de Boole son un conjunto de proposiciones, es decir, de hechos expresados mediante oraciones del lenguaje natural. Tales proposiciones tienen como propiedad ser verdaderas o falsas. Al mismo tiempo, y prescindiendo de si son verdaderas o falsas, cada proposición tiene lo que se llama su proposición complementaria, que no es sino la negación de la misma: la negación de la proposición P es la proposición complementaria P'.
Las consecuencias de estas proposiciones pueden descubrirse realizando operaciones matemáticas sobre los símbolos que las representan. Las dos operaciones básicas son la conjunción y la disyunción. Su sentido es fácil de comprender si se piensa en las dos partículas gramaticales correspondientes, la conjunción copulativa "y" (con idea de adición o suma) y la conjunción disyuntiva "o" (con idea de exclusión). En el lenguaje natural, sin embargo, tales conjunciones pueden tener otras valores, cosa que obviamente no ocurre en el álgebra de Boole.
Como ejemplo simple, consideremos las dos proposiciones siguientes: "hoy estaré en casa" y "mañana estaré en casa". Representamos la primera proposición con el símbolo P y la segunda con el símbolo Q. Las dos proposiciones pueden combinarse en una de dos formas: por un lado, P o Q (hoy estaré en casa o mañana estaré en casa), y, por otro P y Q (hoy estaré en casa y mañana estaré en casa).
Las reglas del álgebra de Boole pueden utilizarse para determinar las consecuencias de las diversas combinaciones de estas proposiciones en función de si las proposiciones son verdaderas (V) o falsas (F). Así, si ambas proposiciones son verdaderas, la combinación P y Q es también verdadera. Es decir, si la proposición "hoy estaré en casa" (P) es verdadera, y la proposición "mañana estaré en casa" (Q) también es verdadera, entonces la combinación "hoy estaré en casa y mañana estaré en casa" (P y Q) también debe ser verdadera.
3-Propiedades
Compuertas Logicas