ORIGINAL RESEARCH
Liu A.†, Milner E.S.†, Peng Y.-R., Blume H.A., Brown M.C., Bryman G.S., Emanuel A.J., Morquette P., Viet N.-M., Sanes J.R., Gamlin P.D., Do M.T.H. (2023) Encoding of environmental illumination by primate melanopsin neurons. Science. 379, 376-381. (†equal contribution).
|Link| |Perspective|
Baldicano A.K., Nasir-Ahmad S., Novelli M., Lee S.C.S., Do M.T.H., Martin P.R., Grünert U. (2022) Retinal ganglion cells expressing CaM kinase II in human and non-human primates. Journal of Comparative Neurology. 530, 1470-1493.
|PDF|
Nasir-Ahmad S., Vanstone K.A., Novelli M., Lee S.C.S., Do M.T.H., Martin P.R., and Grünert U. (2021) Satb1 expression in retinal ganglion cells of marmosets, macaques, and humans. Journal of Comparative Neurology. 530, 923-940.
|PDF|
Bryman G.S., Liu A., and Do M.T.H. (2020) Optimized signal flow through photoreceptors supports the high-acuity vision of primates. Neuron. 108, 335-348.
|PDF| |Lay Summary|
Highlights
- Despite their shape, primate foveal photoreceptors propagate signals with fidelity.
- High-fidelity signal propagation is independent of amplification.
- Optimizations of intracellular and membrane conductivities support propagation.
- Biophysical limits help explain the conservation of foveal size across species.
-
Peng Y.R., Shekhar K., Yan W., Herrmann D., Sappington A., Bryman G.S., van Zyl T., Do M.T.H., Regev A., Sanes J.R. (2019) Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell. 176, 222-1237.
|PDF|
-
Milner, E.S. and Do, M.T.H. (2017) A population representation of absolute light intensity in the mammalian retina. Cell. 171, 865-876.
|PDF| |Preview| |Lay Summary|
Highlights
- M1 ipRGCs code a broad range of light intensities as a population.
- Depolarization block constrains the range of single cells.
- Dynamics of block onset and reversal confer response flexibility and efficiency.
- Distortion of spike output during partial block is removed by axonal propagation.
-
Emanuel, A. J., Kapur K, and Do, M.T.H. (2017) Biophysical variation within the M1 type of ganglion cell photoreceptor. Cell Reports. 21, 1048-1062.
|PDF|
Highlights
- Biophysical variation is extreme within a well-defined type of retinal neuron.
- Key parameters span log units and differ more within than between related types.
- Parameter variations are largely independent, allowing flexible diversification.
- Biophysical variation is associated with diversity in spike pattern within the population.
-
Emanuel, A. J. and Do, M.T.H. (2015) Melanopsin tristability for sustained and broadband phototransduction. Neuron. 85, 1043-1055.
|PDF| |Lay Summary|
Highlights
- IpRGCs produce a persistent response that integrates light over minutes.
- Long-wavelength light acutely decreases the persistent response of ipRGCs.
- The intrinsic photosensitivity of ipRGCs exhibits chromatic integration.
- Photoequilibration of melanopsin among three states accounts for these properties.
-
Do, M.T.H. and Yau, K.-W. (2013) Adaptation to steady light by intrinsically photosensitive retinal ganglion cells. Proceedings of the National Academy of Sciences. 110, 7470-7475.
|PDF|
-
Xue, T., Do, M.T.H., Riccio, A., Jiang, Z., Hsieh, J., Wang, H.C., Merbs, S.L., Welsbie,D. S., Yoshioka, T., Weissgerber, P., Stolz, S. , Flockerzi, V., Freichel, M., Simon, M. I., Clapham, D. E. and Yau, K.-W. (2011) Melanopsin Signaling in Mammalian Iris and Retina. Nature 479, 67-73.
|PDF|
-
Perez de Sevilla Mueller, L., Do, M.T.H., Yau, K.-W., He, S., and Baldridge, W. H. (2010) Coupling patterns of ipRGCs. The Journal of Comparative Neurology 518, 4813-4824.
|PDF|
-
Do, M.T.H., Kang, S. H., Xue, T., Zhong, H., Liao, H.-W., Bergles, D. E. and Yau, K.-W. (2009) Photon capture and signalling by melanopsin retinal ganglion cells. Nature 457, 281-287.
|PDF| |Dispatch| |Lay Summary|
REVIEWS, PERSPECTIVES, AND METHODS
Emanuel, A.J.E. and Do, M.T.H. The multistable melanopsins of mammals. Frontiers in Ophthalmology. 3, 1174255. Mini-review.
|Link|
Do, M.T.H. (2022) Patch-clamp electrophysiological analysis of murine melanopsin neurons. In Neuromethods: Circadian Clocks. Eds. Hirota T, Hatori M, and Panda S. Humana Press (Springer-Nature).
|Link|
Do, M.T.H. (2022) Light links neonatal neurons for learning. Cell. 185, 3081. Preview.
|Link|
Do, M.T.H. (2022) Individual variations of visual information. Neuron. 110, 564. Preview.
|Link|
Do, M.T.H. (2019) Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron. 104, 205-226. Review.
|PDF|
-
Do, M.T.H. (2018) Mixed palettes of melanopsin phototransduction. Cell. 175, 637-639. Preview.
|PDF|
-
Do, M.T.H. (2017) The outer and inner halves of photoreceptor adaptation. The Journal of Physiology. 595, 3247-3248. Preview.
|PDF|
-
Do, M.T.H. and Yau K.-W. (2010) Intrinsically photosensitive retinal ganglion cells. Physiological Reviews 90, 1547-1581. Review.
|PDF|
-
Fu Y., Liao H.-W., Do, M.T.H. and Yau, K.-W. (2004) Non-image-forming ocular photoreception in vertebrates. Current Opinion in Neurobiology 15, 415-422. Review.
|PDF|
FOR THE PUBLIC
Perceiving light without seeing: how light resets your internal clock (2022) Ari Daniel, NPR Weekend Edition.
|Link|
Sharp sight from brisk bioelectrical conduction (2020) Harvard Brain Science Initiative News.
|Link|
Sensing light without sight (2018) Formerly on Boston Children's Hospital's Vector Blog
|Link|
Sunrise, sunset (2017) Harvard Medical School News & Research.
|Link|
Stories under the stars: a light in the dark (2016) Produced by Ari Daniel. An occasional event at the Charles Hayden Planetarium featuring the intrinsically photosensitive retinal ganglion cells and voices of scientists in the field.
|Link|
How fast would an object have to move to be invisible to the naked eye? Could Dash from “The Incredibles” really run so fast that we could not see him? (2011) HHMI Bulletin.
|Link|
Dissociated foveal (left panels; the long axons curl sometimes) and peripheral (right panel) cones of the macaque.
Do, M.T.H. and Bean, B. P. (2004) Sodium currents in subthalamic nucleus neurons from Nav1.6-null mice. Journal of Neurophysiology 92, 726-733.
|PDF| |Preview|
-
Do, M.T.H. and Bean, B. P. (2003) Subthreshold sodium currents and pacemaking of subthalamic neurons: modulation by slow inactivation. Neuron 39, 109-120.
|PDF| |Preview|
-
Coopman, P., Do M.T.H., Barth, M., Bowden, E. T., Hayes, A. J., Basyuk, E., Blancato, J. K., Vezza, P. R., McLeskey, S. W., Mangeat, P. H., and Mueller, S.C. (2000) The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature 406, 742-747.
|PDF|
-
Coopman, P., Do, M.T.H., Thompson, E. W., and Mueller, S. C. (1998) Phagocytosis of cross-linked gelatin matrix by human breast carcinoma cells correlates with their invasive capacity. Clinical Cancer Research 4, 507-515.
|PDF|
Tetrodotoxin-sensitive currents of a subthalamic nucleus neuron (Do and Bean, unpublished).