4. D.G. Bhimani, R. Balhara, S. Thangavelu, Hermite multipliers on Modulation Spaces, In:Delgado J., Ruzhansky M. (eds) Analysis and Partial Differential Equations: Perspectives from Developing Countries. Springer Proceedings in Mathematics & Statistics, vol 275.  Springer, Champ (2019). DOI.

5. D.G. Bhimani, Composition operators on Wiener amalgam spaces, Nagoya Math. J. 240 (2020), 257-274.

6. D.G.Bhimani, The nonlinear Schrodinger equations with harmonic potential in modulation spaces, Discrete Contin. Dyn. Syst. Series A., 39(10), (2019), 5923-5944. 

7. D.G.Bhimani, Global well-posedness for fractional Hartree equation on modulation spaces and Fourier algebra, J. Differential Equations, 268 (1), (2019), 141-159. 

8. D.G. Bhimani, M. Grillakis, and K.A.Okoudjou, The Hartree-Fock equations in modulation spaces , Comm. in Partial Differential Equations, 45 (9)  (2020),  1088-1117.

 9. D.G. Bhimani, R. Carles, Norm inflation for nonlinear Schrodinger equations in Fourier-Lebesgue and modulation spaces with negative regularity,   J. Fourier Anal. Appl.  26( 6) 2020, paper no. 78, 34 pp.

10. D.G. Bhimani, K.A. Okoudjou, Bimodal Wilson systems in L2(R)J.  Math. Ana. Appl.  505 (1) (2020), 25 pp.

11. D.G. Bhimani, R. Manna, F. Nicola, S. Thangavelu and I. S. Trapasso, Phase space analysis of the Hermite semigroup and applications to nonlinear global well-posedness, Adv. Math.  392 (2021)  107995.

12. D.G. Bhimani, Global Cauchy problems for the Klein-Gordon, wave and fractional Schrodinger equations with Hartree nonlinearity on modulation spaces, Electron. J. Differential Equations, 2021, Paper No. 101, 23 pp.


13. D.G. Bhimani, S. Haque, Norm Inflation for Benjamin–Bona–Mahony Equation in Fourier Amalgam and Wiener Amalgam Spaces with Negative Regularity, Mathematics 2021, 9(23), 3145; https://doi.org/10.3390/math9233145  (This article belongs to the Special Issue Microlocal and Time-Frequency Analysis,  Editors: Elena Cordero and S. Ivan Trapasso)


14. D.G. Bhimani, H. Hajaiej, S. Haque, T. Luo, A sharp Gagliardo-Nirenberg inequality and its applications to fractional problems with in homogeneous nonlinearity,  Evol. Equ. Control Theory, 12 (2023), no. 1, 362-390.

15. D.G. Bhimani, S. Haque, The Hartree and  Hartree-Fock equations in Lp and Fourier−Lp spaces,   Ann. Henri Poincare. (2023), no. 3, 1005-1049.

16.  D.G. Bhimani, The Blow-up solutions for fractional heat equations on torus and Euclidean space, Nonlinear Differential Equations and Applications (NoDEA).  30 (2023), no. 2, Paper No. 19. 22 pp.

17. J. Toft, D.G. Bhimani,  R. Manna , Trace maps on quasi-Banach modulation spaces and applications to pseudo-differential operators of amplitude type,  Analysis and Applications. 1. 21 (2023), no. 2, 453-495.


18. D.G. Bhimani, S. HaqueStrong ill-posedness for fractional Hartree and cubic NLS equations,    J. Funct. Anal.    285 (11) (2023), Paper No. 110157,  46 pp.



19. D.G. Bhimani, S. Haque,  Norm inflation for nonlinear wave equation with infinite loss of regularity in Wiener amalgam spacesNonlinear Anal. 223 (2022), Paper No. 113076.



20. J. Toft, D.G. Bhimani,  R. Manna,  Fractional Fourier transforms, harmonic oscillator propagators and Strichartz estimates on Pilipovic and modulation spaces,  Appl. Comput. Harmon. Anal. 67 (2023), 101580.



21. D.G. BhimaniTianxiang Gou,  H.  Hichem, Normalized solutions to nonlinear Schrodinger equations with competing  Hartree-type non-linearities, Math. Nachr., 297 (2024), no. 7, 2543–2580



22. D.G. Bhimani,  R. Manna,  F. Nicola,  S. Thangavelu  and  I. S. Trapasso, On the  heat equation   associated to  fractional  harmonic oscillator, Fract Calc Appl Anal 26 (6) (2023), 2470-2492. https://doi.org/10.1007/s13540-023-00208-6 (open access).


23. D.G. Bhimani,  S. Haque,  On inhomogeneous heat equation with inverse square potential, arXiv:2210.09910.


24. D.G.  Bhimani,  H.  Hichem  and  S. HaqueThe  mixed fractional Hartree equations  in  Fourier amalgam  and modulation spaces , arXiv:2302.10683.  Accepted in Journal of Mathematical  analysis and applications


25. D.G. Bhimani, M. Majdoub and R. Manna, Heat  equations associated to harmonic oscillator with exponential nonlinearity,  arXiv:2306.02828,  Accepted in Annals of Functional Analysis 


26. D.G. Bhimani, J. Toft, Factorizations for quasi-Banach time-frequency spaces and Schatten classes, arXiv:2307.01590, acdepted in  Indagationes Mathematicae 



27. D.G. Bhimani, S. Haque, Remark on the ill-posedness for KdV-Burgers equation in Fourier amalgam spaces,  arXiv:2307.10599, Extended abstracts 2021/2022—Methusalem lectures, 67-73, Trends Math., Res. Perspect. Ghent Anal. PDE Cent., 3, Birkh ̈auser/Springer, Cham, [2024]



28. D. G. Bhimani, The Global well-posedness for Klein-Gordon-Hartree equation in modulation spaces,  J. Differential Equations 408 (2024) 449-467 https://doi.org/10.1016/j.jde.2024.07.025


29. D.G. Bhimani, R. K. Dalai, Pointwise convergence for the heat equation on tori and waveguide manifold,  accepted in Journal of Mathematical Analysis and Applications.

https://doi.org/10.1016/j.jmaa.2025.129389



30. D.G. Bhimani, S.  Haque and M. Ikeda, On the Hardy-Henon heat equation with an inverse square potential, arXiv:2407.13085


31. D.G. Bhimani, D. Dhingra and V.K. Sohani,  Low-regularity global solution of the inhomogeneous nonlinear Schrodinger equations in modulation spaces, available at  arXiv:2410.00869


32. D.G. Bhimani, D. Dhingra and V.K. Sohani,  Low-regularity global solution for fractional NLS in modulation spaces,  https://doi.org/10.48550/arXiv.2412.19714


33.   D.G. Bhimani, A. Biswas,  R.K. Dalai, A unified framework for  pointwise convergence to the initial data of heat equations in metric measure spaces, https://doi.org/10.48550/arXiv.2502.02267


34.  D.G. Bhimani, D. Dhingra and V.K. Sohani, On 1D mass-subcritical nonlinear Schr\"odinger equations in modulation spaces $M^{p,p'}  \ (p<2)$, https://doi.org/10.48550/arXiv.2504.13817 


35. D.G. Bhimani, R.K. Dalai, Pointwise convergence to initial data of heat and Poisson equations in modulation spaces, https://doi.org/10.48550/arXiv.2507.13220


36. D.G. Bhimani, K.B. Solanki, Vector valued weighted analogue of converse of Wiener-Levy theorem and applications to modulation spaces, https://doi.org/10.48550/arXiv.2507.16516


37. D.G. Bhimani, S.R. Choudhary, Orthonormal Strichartz estimates on torus and waveguide manifold and applications,  https://doi.org/10.48550/arXiv.2507.16712














My profile  on: