<script async src="//pagead2.googlesyndication.com/pagead/js/adsbygoogle.js"></script>
<!-- martinchinwe -->
<ins class="adsbygoogle"
style="display:inline-block;width:728px;height:90px"
data-ad-client="ca-pub-3432567292388333"
data-ad-slot="3193770573"></ins>
<script>
(adsbygoogle = window.adsbygoogle || []).push({});
</script>
REFERENCES
[1] “Lung Cancer ( Non-Small Cell ),” American Cancer Society. 2012.
[2] “EPA Assessment of Risks from Radon in Homes.” United States Evironmental Protection Agency, 2003.
[3] “Lung Cancer ( Small Cell ) Overview,” American Cancer Society. 2013.
[4] S. S. Hecht, “Tobacco Smoke Carcinogens and Lung Cancer,” J. Natl. Cancer Inst., vol. 91, no. 14, 1999.
[5] M. Nishizaki, R. E. Meyn, L. B. Levy, E. N. Atkinson, R. A. White, J. A. Roth, and L. Ji, “Synergistic Inhibition of Human Lung Cancer Cell Growth by Adenovirus-mediated Wild-Type p53 Gene Transfer in Combination with Docetaxel and Radiation Therapeutics in Vitro and in Vivo Synergistic Inhibition of Human Lung Cancer Cell Growth by Adenovirus-,” Am. Assoc. Cancer Res., 2001.
[6] P. Chen, M. Li, X. Gu, Y. Liu, X. Li, C. Li, Y. Wang, D. Xie, F. Wang, C. Yu, J. Li, X. Chen, R. Chu, J. Zhu, Z. Ou, and H. Wang, “Higher blood 25(OH)D level may reduce the breast cancer risk: evidence from a Chinese population based case-control study and meta-analysis of the observational studies.,” PLoS One, vol. 8, no. 1, p. e49312, Jan. 2013.
[7] P. Zubor, J. Danko, K. Kajo, and N. Szunyogh, “Low affordability may limit the effect of cervical cancer vaccination in central and eastern European countries.,” J. Clin. Oncol., vol. 25, no. 34, pp. 5534–7, Dec. 2007.
[8] C. A. Acevedo-estefania, C. Gonzalez, K. R. Rios-soto, E. D. Summerville, and C. Castillo-chavez, “A Mathematical Model for Lung Cancer : The Effects of Second-Hand Smoke and Education.” pp. 521–548, 2000.
[9] R. Karen and D. Summerville, “of for Lung The Effects Effects of A Mathematical Model for Cancer : The Lung Cancer : Smoke and Second-Hand Smoke of Puerto Texas A & M of Puerto,” pp. 521–548.
[10] H. Witschi, “A Short History of Lung Cancer,” Toxicol. Sci., vol. 6, pp. 4–6, 2001.
[11] M. S. Al-tarawneh, “Lung Cancer Detection Using Image Processing Techniques,” Leonardo Electron. J. Pract. Technol., no. 20, pp. 147–158, 2012.
[12] “Lung Cancer,” College of American Pathologists, 2011.
[13] K. A. G. Udeshani and T. G. I. Fernando, “Statistical Feature-based Neural Network Approach for the Detection of Lung Cancer in Chest X-Ray Images,” Int. J. Image Process., vol. 5, no. 4.
[14] J. L. Mulshine, “Screening for lung cancer: in pursuit of pre-metastatic disease.,” Perspectives (Montclair)., vol. 3, no. 1, pp. 65–73, Jan. 2003.
[15] B. S. Kramer, C. D. Berg, D. R. Aberle, and P. C. Prorok, “Lung cancer screening with low-dose helical CT: results from the National Lung Screening Trial (NLST).,” J. Med. Screen., vol. 18, no. 3, pp. 109–11, Jan. 2011.
[16] J. L. Mulshine, “Clinical Issues in the Management of Early Lung Cancer Clinical Issues in the Management of Early Lung Cancer,” Am. Assoc. Cancer Res., 2005.
[17] G. Jindal et al, “Identifying Lung Cancer Using Image Processing Techniques,” Int. Conf. Comput. Tech. Artif. Intell., pp. 115–120, 2011.
[18] G. J. Poonam Bhayan, “A Segmented Morphological Approach to Detect Tumor in Lung Images,” Int. J. Comput. Sci. Technol., vol. 4333, pp. 499–502, 2011.
[19] M. Joshi, “IMAGE PROCESSING IN MULTIMEDIA APPLICATIONS,” J. Inf. Oper. Manag., vol. 3, no. 1, pp. 188–190, 2012.
[20] O. Miljkovi, “IMAGE PRE-PROCESSING TOOL,” Kragujev. J. Math., vol. 32, pp. 97–107, 2009.
[21] D. N. Ponraj, M. E. Jenifer, and J. S. Manoharan, “A Survey on the Preprocessing Techniques of Mammogram for the Detection of Breast Cancer,” J. Eng. Trends Comput. Inf. Sci., vol. 2, no. 12, pp. 656–664, 2011.
[22] A. Chaudhary, “LUNG CANCER DETECTION USING DIGITAL IMAGE PROCESSING,” Int. J. Res. Eng. Appl. Sci., vol. 2, no. 2, pp. 1351–1359, 2012.
[23] S. Misal, S. A. Hannan, and S. Lomte, “Comparative Study of Image Processing Techniques on Geometrical Shape,” Int. J. Emerg. Technol. Adv. Eng., vol. 2, no. 9, 2012.
[24] M. Kumar, “Digital image processing,” Inst. Remote Sensing, Dehra Dun, India, pp. 81–102.
[25] M. F. Al-samaraie, “A New Enhancement Approach for Enhancing Image of Digital Cameras by Changing the Contrast,” Int. J. Adv. Sci. Technol., vol. 32, pp. 13–22, 2011.
[26] Garg Kanwal et al, “Neural Network Based Approach for Detection of Abnormal Regions of Lung Cancer in X-Ray Image,” vol. 1, no. 5, pp. 1–7, 2012.
[27] M. Kalpana, G. Kishorebabu, and K. Sujatha, “Extraction of Edge Detection Using Digital Image Processing Techniques,” Int. J. Comput. Eng. Res., vol. 2, no. 5, pp. 1562–1566, 2012.
[28] R. Maini, “Study and Comparison of Various Image Edge Detection Techniques,” Int. J. Image Process., vol. 147002, no. 3, pp. 1–12.
[29] A. H. Al-fayadh, “CT Angiography Image Segmentation by Mean Shift Algorithm and Contour with Connected Components Image,” Int. J. Sci. Eng. Res., vol. 3, no. 8, pp. 1–5, 2012.
[30] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient Graph-Based Image Segmentation,” Artif. Intell. Lab, Massachusets Inst. Technol., pp. 1–26.
[31] M. S. Dinesh et al, “Classification of Mass in Breast Ultrasound Images using Image Processing Techniques,” Int. J. Comput. Appl., vol. 42, no. 10, pp. 29–36, 2012.
[32] R. Posada-gómez, “Digital Image Processing Using LabView,” www.intechopen.com, 2001.
[33] D. Comaniciu, P. Meer, and S. Member, “Mean Shift : A Robust Approach Toward Feature Space Analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603–619, 2002.
[34] J. Sachs, Digital Image Basics. 1999, pp. 1–14.
[35] F. Paul, C. Huggel, and A. Ka, “Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers,” Remote Sens. Environ., vol. 89, pp. 510–518, 2004.
[36] S. Sudha, G. R. Suresh, and R. Sukanesh, “Speckle Noise Reduction in Ultrasound Images by Wavelet Thresholding based on Weighted Variance,” Int. J. Comput. Theory Eng., vol. 1, no. 1, pp. 7–12, 2009.
[37] M. Juneja and R. Mohana, “An Improved Adaptive Median Filtering Method for Impulse Noise Detection,” Int. J. Recent Trends Eng., vol. 1, no. 1, pp. 274–278, 2009.
[38] S. Kalavathy, “A Switching Weighted Adaptive Median Filter for Impulse Noise Removal,” Int. J. Comput. Appl., vol. 28, no. 9, pp. 8–13, 2011.
[39] A. K. E. Isaac, “O N T HE P ERFORMANCE O F F ILTERS F OR R EDUCTION O F S PECKLE N OISE I N S AR I MAGES O FF T HE C OAST O F T HE G ULF O F,” vol. 1, no. 4, pp. 43–52, 2013.
[40] L. M. Davala, “Directional Linear Minimum Mean Square- Error Estimation in Color Demosaicking,” vol. 2, no. 4, pp. 171–183, 2012.
[41] A. Stella and B. Trivedi, “Implementation of Order Statistic Filters on Digital Image and OCT Image : A Comparative Study,” vol. 2, no. 5, pp. 3143–3145, 2012.
[42] “Biometrics Glossary,” Biometrics Glossary. National Science & Technology Council, pp. 1–33, 2006.
[43] K. Lavanya, “Segmentation of Lungs , Fissures , Lobes from Chest CT Images and Analysis,” Int. J. Electron. Commun. Comput. Technol., vol. 2, no. 5, pp. 208–212, 2012.
[44] V. Sokratis, E. Kavallieratou, and R. Paredes, “A Hybrid Binarization Technique for Document Images,” Springer-Verlag Berlin Heidelb., pp. 165–179, 2011.
[45] Y. Zhang and L. Wu, “Fast Document Image Binarization Based on an Improved Adaptive Otsu ’ s Method and Destination Word Accumulation,” J. Comput. Inf. Syst., vol. 6, pp. 1886–1892, 2011.
[46] N. Homma, “CT Image Based Computer-Aided Lung Cancer Diagnosis,” INTECH, vol. 1, 2008.
[47] A. R. Kaur, “Early Detection and Prediction of Lung Cancer Survival using Neural Network Classifier,” Int. J. Appl. or Innov. Eng. Manag., vol. 2, no. 6, pp. 375–383, 2013.
[48] V. Agarwal, “Analysis of Histogram Equalization in Image Preprocessing,” BIOINFO Human-Computer Intreaction, vol. 1, no. 1, pp. 4–7, 2011.
[49] I. Pitas and A. N. Venetsanopoulos, “Order Statistics in Digital Image Processing,” Proc. IEEE, vol. 80, no. 9206277, pp. 1893–1921, 1992.
[50] a Gasteratos, I. Andreadis, and P. Tsalides, “A parallel architecture for implementation of filters based on order statistics,” Pattern Recognit. Lett., vol. 19, no. 9, pp. 815–820, Jul. 1998.
[51] A. Mcandrew, “An Introduction to Digital Image Processing with Matlab,” Matlab. 2004.
[52] Z. M. Darko BRODIC, “Optimization of the Gaussian Kernel Extended by Binary Morphology for Text Line Segmentation,” Tech. Fac. Bor, Univ. Belgrade, pp. 718–724.
[53] G. Padmavathi, P. Subashini, M. M. Kumar, and S. K. Thakur, “Comparison of Filters used for Underwater Image Pre-Processing,” Int. J. Comput. Sci. Netw. Secur., vol. 10, no. 1, pp. 58–65, 2010.
[54] G. S. S, U. S. Nagar, and A. Safir, “REMOVAL OF SPECKLE NOISE FROM EYE IMAGES,” no. I, 2011.
[55] K. Balakrishnan, K. Sunil, A. V Sreedhanya, and K. P. Soman, “Effect Of Pre-Processing On Historical Sanskrit Text Documents,” Int. J. Eng. Res. Appl., vol. 2, no. August, pp. 1529–1534, 2012.
[56] M. Rajinikannan, “Estimating the Impact of Fingerprint Image Enhancement Algorithms for Better Minutia Detection,” Int. J. Comput. Appl., vol. 2, no. 1, pp. 36–42, 2010.
[57] G. Goyal, A. K. Bansal, and M. Singhal, “Review Paper on Various Filtering Techniques and Future Scope to Apply These on TEM Images,” Int. J. Sci. Res. Publ., vol. 3, no. 1, 2013.
[58] L. Liu, “Ridge Orientation Estimation and Verification Algorithm for Fingerprint Enhancement,” J. Univers. Comput. Sci., vol. 12, no. 10, pp. 1426–1438, 2006.
[59] R. Van Den Boomgaard and R. Van Der Weij, “Gaussian Convolutions,” Intell. Sens. Inf. Syst. Univ. Amsterdam, Netherlands, pp. 205–214, 2001.
[60] P. F. Evangelista, M. J. Embrechts, and B. K. Szymanski, “Some Properties of the Gaussian Kernel for One Class Learning,” Proceeding Int. Conf. Artif. Neutral Networks, vol. 4668, pp. 269–278, 2007.
[61] N. Benoudjit, A. Lendasse, J. Lee, and M. Verleysen, “Width optimization of the Gaussian kernels in Radial Basis Function Networks,” ESANN’2002 PROCEEDINGS-EUROPEAN Symp. Artif. NETWORKS, no. April, pp. 425–432, 2002.
[62] J. Wang, H. Lu, K. N. Plataniotis, and J. Lu, “Gaussian Kernel Optimization for Pattern Classification,” Elsevier Sci., no. September 2008, pp. 1–28.
[63] R. Kundu, P. Lenka, and R. Kumar, “Cobb Angle Quantification for Scoliosis Using Image Processing Techniques,” Int. J. Comput. Appl., pp. 6–11, 2012.
[64] P. Viswanathan and P. V. Krishna, “Morlet Wavelet Fingerprint Invariant Automated Authentication System,” Int. J. Recent Trends Eng., vol. 4, no. 1, pp. 1–5, 2010.
[65] J. G. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,” ournal Opt. Soc. Am., vol. 2, no. 7, pp. 1160–1169, 1985.
[66] V. S. N. Prasad and J. Domke, “Gabor Filter Visualization,” no. c.
[67] G. Amayeh and A. Tavakkoli, “Accurate and Efficient Computation of Gabor Features in Real-Time Applications,” Combuter Vis. Lab. Univ. Nevada, Reno.
[68] H. GOMEZ-MORENO ET AL, “A Modified Median Filter for the Removal of Impulse Noise Based on the Support Vector Machines.” .
[69] R. H. Chan, C. Hu, and M. Nikolova, “An Iterative Procedure for Removing Random-Valued Impulse Noise,” IEEE Signal Process. Lett., vol. 11, no. 12, pp. 921–924, Dec. 2004.
[70] J. Bo, “Adaptive Threshold Median Filter for Multiple-Impulse Noise,” J. Electron. Sci. Technol. China, vol. 5, no. 1, pp. 1–5, 2007.
[71] M. Stork, “Median filters theory and applications,” Univ. West Bohemia, Dep. Appl. Electron. Czech Repub., no. 3, pp. 1–5.
[72] E. H. Barney Smith, L. Likforman-Sulem, and J. Darbon, “Effect of Preprocessing on Binarization,” Boise State Univ. Sch. Work., p. 75340H–75340H–8, Jan. 2010.
[73] K. Moreland and E. Angel, “The FFT on a GPU,” Eurographics Assoc., 2003.
[74] M. Dobroczynski, “2D FFT in Image Processing : measurements , implementation , parallelization and computer architecture,” Engineering College of Copenhagen, 2006.
[75] Q. Chen, X. Yang, and E. M. Petriu, “Watershed Segmentation for Binary Images with Different Distance Transforms,” IEEE J. Sel. Top. Signal Process., pp. 111–116, 2004.
[76] S. S. Al-amri, N. V Kalyankar, and S. D. Khamitkar, “Image Segmentation by Using Thershod Techniques,” J. Comput., vol. 2, no. 5, pp. 83–86, 2010.
[77] M. Athimethphat, “A Review on Global Binarization Algorithms for Degraded Document Images,” AU J. Technol., vol. 14, no. 3, pp. 188–195, 2011.
[78] R. Dass and S. Devi, “Image Segmentation Techniques,” IJECT, vol. 7109, pp. 66–70, 2012.
[79] N. Salman, “Image Segmentation Based on Watershed and Edge Detection Techniques,” Int. Arab J. Inf. Technol., vol. 3, no. 2, pp. 104–110, 2006.
[80] S. A. Patil and M. B. Kuchanur, “Lung Cancer Classification Using Image Processing,” Int. J. Eng. Innov. Technol., vol. 2, no. 3, pp. 37–42, 2012.
[81] N. Gulati, “Evolution of Contours in Deformable Models using Single and Grid Mask Initialization,” Int. Journals Emerg. Trends Technol. Comput. Sci., vol. 2, no. 2, pp. 285–289, 2013.
[82] M. T. Cse, “A Study of Detection of Lung Cancer Using Data Mining Classification Techniques,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 3, no. 3, pp. 131–134, 2013.
[83] K. Sankar and M. Prabhakaran, “An Improved Architecture for Lung Cancer Cell Identification Using Gabor Filter and Intelligence System,” Int. J. Eng. Sci., vol. 2, no. 4, pp. 38–43, 2013.
[84] K. E. al Arai, “Comparison of 2D and 3D Local Binary Pattern in Lung Cancer Diagnosis,” Int. J. Adv. Comput. Sci. Appl., vol. 3, no. 4, pp. 89–95, 2012.
[85] A. Dna, “Lung Cancer ( Small Cell ) What is cancer ?”
[86] “tumorigenesis,” Free Medical Dictionary. [Online]. Available: http://medical-dictionary.thefreedictionary.com/tumorigenesis.
[87] “Metastasis,” wikipedia. [Online]. Available: http://en.wikipedia.org/wiki/Metastasis.
[88] “Antiproliferative.” [Online]. Available: http://biomed.brown.edu/Courses/BI108/BI108_2004_Groups/Group04/Antiproliferative_Agents.htm. [Accessed: 31-Mar-2014].
[89] Wikipedia, “Angiogenesis.” [Online]. Available: http://en.wikipedia.org/wiki/Angiogenesi.
[90] Webster, “antiangiogenesis.” [Online]. Available: http://www.merriam-webster.com/medical/antiangiogenesis.
[91] J. Debayle and J. Pinoli, “General Adaptive Neighborhood Image Processing,” J. Math. Imaging Vis., vol. 25, no. 2, pp. 267–284, 2006.
[92] Pnas.org, “X-ray structure and mechanism of RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct.” [Online]. Available: http://www.pnas.org/content/107/21/9584/F1.expansion.html. [Accessed: 31-Mar-2014].
[93] Life-worldwide, “Normal CT scan of the chest.” [Online]. Available: http://www.life-worldwide.org/assets/uploads/files/CT and MRI imagesnormalabnormalradiologysectioncompressed.pdf.