Working papers:
Azriel D., Kapelner A., Krieger A.M. (2025). Block Designs that Provide Optimal Power in the Cochran-Mantel-Haenszel Test. arXiv link
Azriel D., Davenport S., Schwartzman A. (2025). Consistency of heritability estimation from summary statistics in high-dimensional linear models. arXiv link
Azriel D., Krieger, A.M. , Kaplener A. (2024). The Optimality of Blocking Designs in Experiments with General Response. arXiv link
Azriel D., Rinott Y. (2015). On measuring and comparing the usefulness of statistical models. Center of Rationality HUJI Discussion Paper 669. Link.
Publication in reverse chronological order:
Kapelner, A., Krieger, A. and Azriel, D. (2025), The Pairwise Matching Design Is Optimal Under Extreme Noise and Extreme Assignments. Stat, 14: e70058.
Livne I., Azriel D., Goldberg Y. (2025). A zero-estimator approach for estimating the signal level in a high-dimensional model-free setting. Journal of Statistical Planning and Inference. 234, 106207. arXiv link
Peer A., Azriel D. (2024). Optimal confidence interval for the difference between proportions. Statistics and Computing. 34, 177. arXiv link
Azriel D., Rinott Y., Tal O., Abbou B., Rappoport N. (2024). Surgery duration prediction using multitask feature selection. IEEE The Journal of Biomedical and Health Informatics. 28, 4216-4223. arXiv link
Kaplener A., Krieger, A.M. , Azriel D. (2023). The Role of Pairwise Matching in Experimental Design for an Incidence Outcome. Australian & New Zealand Journal of Statistics. 65, 379-373. arXiv link
Segal I., Khamis S., Sagie L., Genizi J., Azriel D., Katzenelenbogen S., Fattal-Valevski A. (2023). Functional Benefit and Orthotic Effect of Dorsiflexion-FES in Children with Hemiplegic Cerebral Palsy. Children, 10, 531.
Azriel D., Rinott Y., Posch M. (2023). Optimal designs for the development of personalized treatment rules. Scandinavian Journal of Statistics, 50, 897-411. arXiv link
Krieger A.M., Azriel D., Sklar M., Kapelner A. (2024). Design choices in randomization tests that affect power. Communications in Statistics – Theory and Methods. 53, 3276–3291. arXiv link.
Azriel D. (2023). Optimal minimax random designs for weighted least squares estimators. Biometrika, 110, 273-280. arXiv link
Krieger A.M., Azriel D., Kapelner A. (2023). Better Experimental Design by Hybridizing Binary Matching with Imbalance Optimization. Canadian Journal of Statistics, 51, 275-292. arXiv link.
Livne I., Azriel D., Goldberg Y. (2022). Improved Estimators for Semi-supervised High-dimensional Regression Model. Electronic Journal of Statistics, 16, 5437-5487. arXiv link
Ben-Shabat T., Meir R., Azriel D. (2022). Empirical Bayes approach to truth discovery problems. The 38th Conference on Uncertainty in Artificial Intelligence. Link.
Azriel D., Brown L.D., Sklar M., Berk R., Buja A., Zhao L. (2022). Semi-Supervised linear regression. The Journal of the American Statistical Association, 117, 2238-2251. arXiv link R code
Kaplener A., Krieger, A.M., Sklar M., Azriel D. (2022). Optimal Rerandomization via a Criterion that Provides Insurance Against Failed Experiments. Journal of Statistical Planning and Inference, 219, 63-84. arXiv link.
Azriel D., Rinott Y. (2021). Optimal selection of sample-size dependent common subsets of covariates for multi-task regression prediction. Electronic Journal of Statistics, 15, 4966-5013. arXiv link.
Kapelner A., Krieger, A.M., Sklar M., Shalit U., Azriel D. (2021). Harmonizing Fully Optimal Designs with Classic Randomization in Fixed Trial Experiments. The American Statistician, 75, 195-206.
Azriel D., Schwartzman A. (2020). Estimation of linear projections of non-sparse coefficients in high-dimensional regression. Electronic Journal of Statistics, 14, 174-206.
Azriel D. (2019). The conditionality principle in high-dimensional regression. Biometrika, 106, 702–707. arXiv link
Krieger A.M., Azriel D., Kapelner A. (2019). Nearly Random Designs with Greatly Improved Balance. Biometrika, 106, 695-701.
Azriel D., Feigin P.D., Mandelbaum A. (2019). Erlang-S: A Data-Based Model of Servers in Queueing Networks. Management Science, 65, 4451-4949.
Wiser, I., Scope, A., Azriel, D., Zloczower, E., Carmel, N. N., Shalom, A. (2016). Head and Neck Cutaneous Squamous Cell Carcinoma Clinicopathological Risk Factors according to Age and Gender: A Population-based Study. The Israel Medical Association journal, 18, 275-278.
Azriel D. (2015). Power efficiency of Efron's biased coin design. Journal of Statistical Planning and Inference, 129, 15-27.
Azriel D., Schwartzman A. (2015). The Empirical Distribution of a Large Number of Correlated Normal Variables. The Journal of the American Statistical Association, 110, 1217-1228.
Azriel D. (2015). Optimal allocation designs for a multi-arm multi-objective clinical trial. A chapter in Modern Adaptive Randomized Clinical Trials: Statistical and Practical Aspects, Ed. Sverdlov O. CRC Press.
Azriel D., Feigin P.D. (2014). Adaptive designs to maximize power in clinical trials with multiple treatments. Sequential Analysis: Design Methods and Applications, 33, 60--86.
Azriel D. (2014). Optimal sequential designs in phase I studies. Computational Statistics and Data Analysis. 71, 288–297.
Azriel D., Mandel M., Rinott Y. (2012). Optimal allocation to maximize power of two-sample tests for binary response. Biometrika, 99, 101--113.
Azriel D. (2012). A note on the robustness of the continual reassessment method. Statistics and Probability letters, 82, 902--906.
Azriel D., Mandel M., Rinott Y. (2011). The treatment versus experimentation dilemma in dose finding studies. Journal of Statistical Planning and Inference, 141, 2759--2768.
Oron A., Azriel D., Hoff P. (2011). Dose-Finding Designs: The Role of Convergence Properties. The International Journal of Biostatistics, 7, Article 39.