Publications

2024

Geometric optimal control of the generalized Lotka–Volterra model of the intestinal microbiome, 

Optim. Control Appl. Meth. 2024;1-31. 

doi: 10.1002/oca.3089;      https://hal.science/hal-03861565

Evaluating COVID-19 in Portugal: Bootstrap confidence interval. 

AIMS Mathematics, 2024, 9(2): 2756-2765. 

https://doi.org/10.3934/math.2024136

2023

An Analytic Method to Determine the Optimal Time for the Induction Phase of Anesthesia

 Axioms 12, no. 9: 867, 2023

https://doi.org/10.3390/axioms12090867

"Editorial for the Special Issue of Axioms “Calculus of Variations, Optimal Control and Mathematical Biology: A Themed Issue Dedicated to Professor Delfim F. M. Torres on the Occasion of His 50th Birthday”, Axioms 12, no. 2: 110, 2023. 

https://doi.org/10.3390/axioms12020110 

Mathematical models and optimal control in mosquito transmitted diseases

In: Bio-mathematics, Statistics, and Nano-Technologies, New York, 2023.

doi: https://doi.org/10.1201/9781003035992 

2022 

Complex network near-synchronization for non-identical predator-prey systems

AIMS Mathematics, 2022, 7(11): 19975-19997. 

doi: 10.3934/math.20221093

Mathematical analysis of a hybrid model: Impacts of individual behaviors on the spreading of an epidemic

Networks and Heterogeneous Media, Vol. 17, No. 3, 2022, pp. 333-357.

doi:10.3934/nhm.2022010

Stability and optimal control of a delayed HIV/AIDS-PrEP model. 

Discrete & Continuous Dynamical Systems - S, 2022, 15(3): 639-654. 

doi: 10.3934/dcdss.2021156

A Multiobjective Optimization Approach to Pulmonary Rehabilitation Effectiveness in COPD

In Statistics, Optimization & Information Computing, Vol. 11, Issue 2, pp. 299–331, 2022

https://doi.org/10.19139/soic-2310-5070-1505 

Graph Theory Approach to COVID-19 Transmission by Municipalities and Age Groups, 

Mathematical and Computational Applications 27, no. 5: 86,  2022. 

https://doi.org/10.3390/mca27050086

Stability Analysis of Delayed COVID-19 Models

Axioms 2022, 11, 400. 

https://doi.org/10.3390/axioms11080400 

A SIQRB delayed model for cholera and optimal control treatment,

Math. Model. Nat. Phenom. 17 (2022) 25 

https://doi.org/10.1051/mmnp/2022027 

COVID-19’s Pandemic: A New Way Of Thinking Through Linear Combinations Of Proportions

in Mathematical Analysis of Infectious Diseases, Elsevier, 2022. 

https://www.elsevier.com/books/mathematical-analysis-of-infectious-diseases/agarwal/978-0-323-90504-6

Complex network model for COVID-19: human behavior, pseudo-periodic solutions and multiple epidemic waves

J. Math. Anal. Appl. 514 (2022), no. 2, Art. 125171, 25 pp.

https://www.sciencedirect.com/science/article/pii/S0022247X2100250X

https://arxiv.org/abs/2010.02368

Model-free based control of a HIV/AIDS prevention model

Mathematical Biosciences and Engineering, 2022, 19(1): 759--774. 

doi: 10.3934/mbe.2022034

2021 

Analysis of a COVID-19 compartmental model: a mathematical and computational approach, 

Mathematical Biosciences and Engineering, 2021, 18(6): 7979-7998. 

doi: 10.3934/mbe.2021396

Optimal control of the COVID-19 pandemic: controlled sanitary deconfinement in Portugal,

Sci Rep 11, 3451 (2021). 

https://doi.org/10.1038/s41598-021-83075-6

Scientific Reports COVID-19 Collection: https://www.nature.com/collections/jjghbagfjg

https://arxiv.org/abs/2009.00660

Global stability condition for the disease-free equilibrium point of fractional epidemiological models

Axioms, vol. 10 n.4, 2021, article-number 238.

URL: https://www.mdpi.com/2075-1680/10/4/238

Fractional model of COVID-19 applied to Galicia, Spain and Portugal,

Chaos Solitons Fractals, Chaos Solitons Fractals 144 (2021), Art. 110652, 7 pp.

Preprint: http://arxiv.org/abs/2101.01287

URL: http://dx.doi.org/10.1016/j.chaos.2021.110652  

Optimal control of vaccination and plasma transfusion with potential usefulness for COVID-19,

 In: 'Analysis of Infectious Disease Problems (Covid-19) and Their Global Impact', Springer Nature Singapore Pte Ltd, 509-525 (2021).  

https://doi.org/10.1007/978-981-16-2450-6_23

https://arxiv.org/abs/2010.04146

Synchronization and Self-organization in Complex Networks for a Tuberculosis Model, 

Math. Comput. Sci. 15 (2021), no. 1, 107--120.

https://doi.org/10.1007/s11786-020-00472-2  

2020   

Ana P. Lemos-Paião, Cristiana J. Silva and Delfim F. M. Torres,

A New Compartmental Epidemiological Model for COVID-19 with a Case Study of Portugal,

Ecological Complexity 44 (2020) Art. 100885, 8 pp

Preprint: https://arxiv.org/abs/2011.08741

DOI: https://doi.org/10.1016/j.ecocom.2020.100885

On SICA models for HIV transmission,

In: Hattaf K., Dutta H. (eds) Mathematical Modelling and Analysis of Infectious Diseases. Studies in Systems, Decision and Control, vol 302. Springer, Cham. (2020). 

https://doi.org/10.1007/978-3-030-49896-2_6

https://arxiv.org/abs/2004.11903

A Survey on Sufficient Optimality Conditions for Delayed Optimal Control Problems

In: Hattaf K., Dutta H. (eds) Mathematical Modelling and Analysis of Infectious Diseases. Studies in Systems, Decision and Control, vol 302. Springer, Cham. (2020) .

https://doi.org/10.1007/978-3-030-49896-2_12

https://arxiv.org/abs/2004.10029

Optimal Control of Aquatic Diseases: A Case Study of Yemen's Cholera Outbreak,

J. Optim. Theory Appl. 185 (2020), no. 3, 1008--1030.

https://doi.org/10.1007/s10957-020-01668-z

https://arxiv.org/abs/2004.07402  

Errata to "Modeling and optimal control of HIV/AIDS prevention through PrEP"Discrete Contin. Dyn. Syst. Ser. S 11 (2018), no. 1, 119–141, 

Discrete Contin. Dyn. Syst. Ser. S  13 (2020), no. 5, 1619–1621. 

https://doi.org/10.3934/dcdss.2020343

Numerical Optimal Control of HIV Transmission in Octave/MATLAB

Math. Comput. Appl. 25 (2020), no. 1, 20 pp

doi:   10.3390/mca25010001

https://arxiv.org/abs/1912.09510

Optimal control of HIV treatment and immunotherapy combination with state and control delays,

Optim Control Appl Meth . 2020 ;41:537-554. 

doi: https://doi.org/10.1002/oca.2558

    2019

Influence of the topology on the dynamics of a complex network of HIV/AIDS epidemic models,

AIMS Mathematics, 2019, 4(4): 1145-1169. 

doi: 10.3934/math.2019.4.1145.

https://www.aimspress.com/article/10.3934/math.2019.4.1145

https://arxiv.org/abs/1911.05508

 A stochastic analysis of the impact of fluctuations in the environment on pre-exposure prophylaxis for HIV infection, 

Soft. Comput. 25, 6731–6743 (2021). 

Published online: 17 December 2019

doi:10.1007/s00500-019-04611-1

A minimal HIV-AIDS infection model with general incidence rate and application to Morocco data,

Stat. Optim. Inf. Comput. 7 (2019), no. 2, 588--603.

http://www.iapress.org/index.php/soic/article/view/soic.20190906

A sufficient optimality condition for non-linear delayed optimal control problems

Pure Appl. Funct. Anal. 4 (2019), no. 2, 345--361.

https://arxiv.org/abs/1804.06937

The Portuguese Meeting in Biomathematics,

Statistics, Optimization and Information Computing, 2019.

http://www.iapress.org/index.php/soic/article/view/soic.20190901

Stability of a fractional HIV/AIDS model

Math. Comput. Simul. 164 (2019), 180-190.

DOI: 10.1016/j.matcom.2019.03.016

http://arxiv.org/abs/1903.02534

A sufficient optimality condition for delayed state-linear optimal control problems,

Discrete Contin. Dyn. Syst. Ser. B 24 (2019), no. 5, 2293-2313.

https://arxiv.org/abs/1901.04340

            2018

A stochastic SICA epidemic model for HIV transmission

Appl. Math. Lett. 84 (2018), 168--175.

https://arxiv.org/abs/1805.01425

Mathematical modeling of Zika disease in pregnant women and newborns with microcephaly in Brazil,

Math Meth Appl Sci. (41) 2018, 8929-8941. 

https://arxiv.org/abs/1711.05630

A cholera mathematical model with vaccination and the biggest outbreak of world’s history

AIMS Mathematics 3 (2018), no. 4, 448--463.   doi: 10.3934/Math.2018.4.448

http://www.aimspress.com/article/10.3934/Math.2018.4.448

Uniform asymptotic stability of a fractional tuberculosis model,

Math. Model. Nat. Phenom. 13 (2018), no. 1, Art. 9, 10 pp.

https://arxiv.org/abs/1801.07059

Stability and Optimal Control of a Delayed HIV Model

Math. Methods Appl. Sci. 41 (2018), no. 6, 2251--2260.

DOI: 10.1002/mma.4207

http://arxiv.org/abs/1609.07654

Optimal control of a delayed HIV model,

Discrete Contin. Dyn. Syst. Ser. B 23 (2018), no. 1, 443--458.

http://arxiv.org/abs/1708.06451

Global stability for a HIV/AIDS model,

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 67 (2018), no. 1, 93--101.

DO I: 10.1501/Commua1_0000000833

Modeling and optimal control of HIV/AIDS prevention through PrEP,

Discrete and Continuous Dynamical Systems -- Series S' (DCDS-S) 11 (2018), no. 1, 119-141.

https://arxiv.org/abs/1703.06446

Multiobjective optimization to a TB-HIV/AIDS coinfection optimal control problem,

Comput. Appl. Math. 37 (2018), no. 2, 2112--2128.

https://arxiv.org/abs/1703.05458

Ebola Model and Optimal Control with Vaccination Constraints,

J. Ind. Manag. Optim. 14 (2018), no. 2, 427--446.

https://arxiv.org/abs/1703.01368

The effect of immigrant communities coming from higher incidence tuberculosis regions to a host country,

Ric. Mat. 67 (2018), no. 1, 89--112.

https://arxiv.org/abs/1701.09157

               2017

Optimal Spraying in Biological Control of Pests,

Math. Model. Nat. Phenom. 12 (2017), no. 3, 51--64.

https://arxiv.org/abs/1704.04073

A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde,

Ecological Complexity 30 (2017) 70-75.

DOI: 10.1016/j.ecocom.2016.12.001

https://arxiv.org/abs/1612.00732v1

An epidemic model for cholera with optimal control treatment,

J. Comput. Appl. Math. 318 (2017) 168--180.

DOI:10.1016/j.cam.2016.11.002

https://arxiv.org/abs/1611.02195

Optimal control of a tuberculosis model with state and control delays,

Math. Biosci. Eng. 14 (2017), no. 1, 321--337

http://arxiv.org/abs/1606.08721

               2015

A TB-HIV/AIDS coinfection model and optimal control treatment,

Discrete Contin. Dyn. Syst., vol. 35, no. 9, 4639-4663, 2015.

http://arxiv.org/abs/1501.03322

Optimal Control of Tuberculosis: A Review,

J. P. Bourguignon, R. Jeltsch, A. Pinto and M. Viana, Dynamics, Games and Science, 701-722,

Springer, CIM Series in Mathematical Sciences, 2015.

http://arxiv.org/abs/1406.3456

Multiobjective approach to optimal control for a tuberculosis model,

Optim. Methods Softw., 30, 2015, 893-910.

DOI:10.1080/10556788.2014.994704

http://arxiv.org/abs/1412.0528

              2014

Cost-effectiveness analysis of optimal control measures for tuberculosis,

Bull. Math. Bio. 76 (2014), no. 10, 2627-2645.

http://link.springer.com/article/10.1007/s11538-014-0028-6?no-access=true

Modeling TB-HIV Syndemic and Treatment,

Journal of Applied Mathematics, vol. 2014, Article ID 248407, 14 pages, 2014.

doi:10.1155/2014/248407.

http://www.hindawi.com/journals/jam/2014/248407/

              2013

An optimal control approach to malaria prevention via insecticide-treated nets,

Conference Papers in Mathematics, vol. 2013, Article ID 658468, 8 pages, 2013.

http://www.hindawi.com/journals/cpis/2013/658468/

Optimal control for a tuberculosis model with reinfection and post-exposure interventions,

Math. Biosci. 244 (2013), no. 2, 154--164.

DOI:10.1016/j.mbs.2013.05.005

http://dx.doi.org/10.1016/j.mbs.2013.05.005

              2012

Optimal control strategies for tuberculosis treatment: a case study in Angola,

Numer. Algebra Control Optim. 2 (2012), no. 3, 601--617.

              2010

control problems, Systems and Control Letters, 59, 720-733 (2010).

doi:10.1016/j.sysconle.2010.08.008.

http://www.sciencedirect.com/science/article/pii/S0167691110001131

IEEE - Transactions on Automatic Control, No. 11, 2488-2499 (2010).

doi:10.1109/TAC.2010.2047742

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5445043

Bol. Soc. Port. Mat. Special Issue, 153-157 (2010).

              2009

O Controlo Óptimo e as suas Múltiplas Aplicações, Bol. Soc. Port. Mat. No. 61 (2009), 11-37.

http://arxiv.org/abs/0903.4019

http://www.spm.pt/catalogo/item/75

              2006

Communications in Applied Analysis, Vol. 10 (2006), no. 4, 503-516

http://arxiv.org/abs/math/0608381

Control and Cybernetics, Vol. 35 (2006), No. 4., 965-975.

http://arxiv.org/abs/math/0607197

------------Proceedings-------------

         2021

Are demographic, clinical and psychosocial factors and depression symptoms associated with dementia risk among patients with HIV in Portugal?,

Journal of Statistics on Health Decision 3 (1) (2021), 40-43.

https://proa.ua.pt/index.php/jshd/article/view/24826

              2016

Stability and Optimal Control of a Delayed HIV Model,

Proceedings of the 16th International Conference on Computational and Mathematical

Methods in Science and Engineering (CMMSE-2016), Costa Ballena (Rota),

Cádiz, Spain, July 4-8, 2016, 1071--1075.

ISBN 978-84-608-6082-2

An epidemic model for cholera with treatment through quarantine,

Proceedings of the 16th International Conference on Computational and Mathematical

Methods in Science and Engineering (CMMSE-2016), Costa Ballena (Rota),

Cádiz, Spain, July 4-8, 2016, 752--757.

ISBN 978-84-608-6082-2

              2013

An optimal control approach to malaria prevention via insecticide-treated nets,

Conference Papers in Mathematics, vol. 2013, Article ID 658468, 8 pages, 2013.

Optimal control strategies for reducing the number of active infected individuals with tuberculosis,

Proceedings of the SIAM Conference on Control and Its Applications (CT13),

San Diego, California, USA, July 8--10, 2013, pp. 44--50.

              2012

Optimal control applied to tuberculosis models,

``The IEA-EEF European Congress of Epidemiology 2012: Epidemiology for a Fair and Healthy Society'',

Eur. J. Epidemiol. (2012) 27, S1--S197.

DOI 10.1007/s10654-012-9722-6

Optimal control of tuberculosis in Angola,

Electronic proceedings of the 20th International Symposium on Mathematical Theory of Networks and Systems (MTNS),

Paper 160 (2012).

------------ PhD Thesis -----------

C. J. Silva, Regularization and Bang-bang Conjugate Times in Optimal Control,

PhD thesis (supervisors: Delfim Torres and Emmanuel Trélat), University of

Aveiro (25%) and University of Orléans (France) (75%), 2010.

Master Thesis

C. J. Silva, Abordagens do Cálculo das Variações e do Controlo Óptimo ao problema

de Newton de Resistência Mínima, Master thesis (supervisor: Delfim Torres),

University of Aveiro, 2005.