The Need for a New Model of the Earth
Lunar Influences on Weather
A number of facts indicate that the Moon affects geophysical phenomena far beyond what would be expected from its gravitational pull. According to statistical analysis there is a lunar effect on a variety of geophysical and meteorological activity when the Moon is within 4o of the (ecliptic) plane of the Earth's orbit around the Sun. For example, between Full Moon and Last Quarter (on the morning side of the Earth), there are geomagnetic storms. The effect is known to be due to energetic particles that are precipitated into the upper atmosphere, producing electrical currents that perturb the magnetic field (i.e., electromagnetic induction).
This effect also involves the entire field system of FEM. The geomagnetic field is also affected by eclipses, which increase the conductivity of the atmosphere (E-region). Lunar effects are more dynamic than previously realized because the effects are due to interaction with the Fields and particle flow (electrostatic repulsion, plasma torus, bow shock, etc.), not gravity.
Extremes in the Moon's orbit are referred to as the lunar nodal cycle, an 18.6-year lunar cycle, which influences weather and other geophysical phenomena. This lunar cycle is apparent in atmospheric pressure, sea level, precipitation, sea-ice conditions, tidal currents, currents in submarine canyons, sea-surface temperatures, geyser eruptions, volcanic eruptions, earthquakes, thunderstorms, auroral frequency, and biological growth series, including tree-ring widths. The lunar influence is more pronounced in mid-latitudes, due to the mid-latitude Fields, and is more clearly represented in records during solar minimums when the effect is not obscured by solar activity. These correlations immediately suggest that FEM is responsible. Meanwhile, present-day, conventional theory is at a loss for an explanation: "The lunar linkage mechanism has not been established and evidently needs research."
Declination and position of the furthest (apogee) and closest (perigee) approaches of the Moon display a lunar phase influence. As is typical, conventional gravitational models do not explain these effects. For example, the heaviest rainfalls of the month at stations in New Zealand, and the Spanish peninsula were correlated with lunar effects, while the magnitude rules out gravitational forces as the primary influence.
Yet, the West Australian Field is near New Zealand, and the Mediterranean Field is near the Spanish peninsula. An electrostatic trigger is responsible for these lunar effects, which involves the Moon causing particle cascades along Field lines (electrostatic repulsion, bow shock, plasma torus, etc.) that ionize the atmosphere. In accord with FEM, the forcing mechanism is a time-varying balance between the Coriolis force and the tractive force of the 18.6-year lunar cycle, which reaches a maximum at the 35o latitudes. Likewise, the phases of the Moon are known to effect widespread, heavy rainfall in the United States. According to the records of 108 stations, thunderstorm occurrence east of the central United States -- the half closer to the North Atlantic Field -- is related to lunar positions for the years 1930 to 1933, and 1942 to 1965. Full Moon is the most influential, two to three days after which increased thunderstorms take place. Even the degree of cloudiness or sunshine is related to the lunar month (synodic cycle).
Daily data for the period 1900 to 1980, in the United States, revealed a lunar influence (phase progression) on variations in precipitation. The Moon's revolution around the Earth, or lunar month, known as the lunar synodic period (29.531 days), and also half that period (14.765 days) were detectable. Again, the effect is not explainable by gravitational models, especially with regard to geographic region and season. The geographic effects are due to Field location and contours, and the seasonal shifts are the result of the solar-FEM linkage.
The impact of these influences can be understood by this statement offered by two climatologists: "It is observed that when the maximum lunar tidal epoch is in phase with the maximum solar activity epoch, climate and economic impacts are amplified." History shows us that this is the case, and could be predicted with an understanding of the solar-lunar-FEM linkage.
Glacial Advance
FEM is clearly involved simply by noting the fact that glacial advance in the Northern Hemisphere, during the last 100 years, shows a lack of synchronicity with that of the Southern Hemisphere. That is, the solar linkage activates one hemisphere in one period, and the other in another period, depending on which hemisphere is pointing away from the Sun, and the polarity of the Interplanetary Magnetic Field (IMF) at the time of peak solar activity. Each glaciation can be matched with acidity levels recorded in polar ice cores, and typical of FEM's interconnected phenomena, the frequency of volcanic eruptions. The 18.6-year lunar and 11-year solar cycles, as well as long-term solar variations, are also observed in glacial advance and ice ages.
The last glacial stage offers a good example of how FEM produces glacial advance and ice ages. Aerosol content of the eastern Antarctic ice indicates that there where large marine and continental inputs at the end of the last glacial stage. Aerosols are airborne droplets of water, and indicate the intensity of wind speeds at the time. Glacial age climate had stronger atmospheric circulation, enhanced aridity, and more aerosol production, as noted in the Antarctic ice. In spite of the greater extent of sea ice, sea salt content in aerosols over central Antarctica was higher, which is due to more aerosol production driven by greater wind speeds over the oceans' surface. The greater salt content indicates greater storminess.
The continents were drier, and active deserts between the 30o latitudes were five times larger than those of today. Stronger ground level winds left behind sand dunes and wind-erosion features (ventifacts, eolian deposits, and loess). About 13,500 to 12,000 years ago, there was an end to the aridity maximum in Africa, the stabilizing of sand dunes in the Australian desert, and a relaxation of the once vigorous circulation.
Just prior to this glaciation there was a burst of solar activity so huge that it pitted the rocks on the Moon! This solar burst is the triggering mechanism for the sudden glacial advance. A solar-FEM linkage was clearly an aspect of producing this ice age.
The nearly instantaneous onset of glacial advance of the ice age cannot be explained by anything other than FEM (see Figure 6). Mammoths that have been found illustrate just how fast the advance was. Whole mammoths, without a single claw or tooth mark of a predator or scavenger, and food still undigested in their stomachs and stuck between their teeth, were uncovered a number of times. Often they were found still standing frozen in the ice. Had the snow fallen slowly or even quickly by modern standards, they would have undoubtedly finished digesting the meal in their stomachs, licked the last morsels between their teeth, and fallen on their sides to be consumed by some predator or scavenger. Instead, the snow fell so quickly that when one body was uncovered in Siberia, sled dogs ate is without the slightest ill effects, as if it were freshly thawed beef.
When reindeer or caribou die in the Arctic, they have been noted to quickly decompose due to remnant body heat and bacteria. This, however, did not happen to the mammoths. Moreover, the undigested vegetable meals in their stomachs should have also quickly decomposed. In fact, the very delicate buttercup found in the stomach of a mammoth should have decomposed within 10 hours. The air temperature would have to be 150o F (62 o C) below zero in order to cool the stomach from 74o to 40o F (14o to -7o C) within ten hours, and thereby, preserve the buttercup. Yet, the initial body temperature was closer to 100o F (30o C), which would require a temperature drop to about 200o F (93o C) below zero.
Moreover, on examining mammoth blood it was discovered that red and white blood cells were still whole, and had not burst. Slow freezing, such as is typical even of a blizzard, would have expanded the cells, causing them to burst. The only known method of preventing blood cells from bursting upon freezing is to use the extremely rapid freezes of cryogenic methods. Likewise, fatty tissue under the skin had survived even after the exposed skin began to decay. Again, had the freezing been slow, or had the mammoths died slowly, the fatty tissue would have been gone long ago. There is no way that conventional theory can explain such rapid glacial development, and while this has been reported in the literature with astonishment, it has gone unexplained, and hence, ignored and even denied. Yet, with FEM there can be the sudden ionization of the atmosphere, triggered by a burst of solar activity, which could cause such a rapid glacial advance.
Solar Influences on Weather
While the actual mechanisms have remained obscure, the topic of solar influences on weather has attained an unprecedented scientific respectability. One understanding which is shared by all scientists is that the solar influence could not be direct. As occurs with most other geophysical phenomena, it is the varying levels of solar plasma and particle flow along Field lines that produces the effects.
Because this is unknown, many unanswered questions remain. One is that the superrotation of the upper atmosphere has always been theoretically unexplained. As is typical of the deficiencies involving present-day models, a scientist makes a comment that is still timely: "No physical mechanism for Sun-weather effects is generally accepted at the present time." Yet, FEM is a model of the Earth that would be expected to create what has been observed. Solar cycle, sunspot and solar flare influences on weather phenomena have been known for a long time. However, such relationships have been denied any real attention by most meteorologists. The reason for this lack of attention is that no satisfactory explanation could be derived from classical physics, particularly with regard to gravity (lunar tidal forces) and mass (fluctuations of solar plasma).
Meanwhile, studies disclosing a solar influence on weather are quite extensive. A list of just a few is quite lengthy. Even sunspot structure and climate are correlated. New studies on solar activity and weather can be found in the literature nearly every day.
One study disclosed that even the 27.5-day solar rotation was present in weather. This study was criticized on the grounds that it resulted from a problem with filtering the data. However, the real difficulty was remarked upon by the critic, and reflects the actual dilemma, since there is "no physical mechanism to explain a 27.5-day solar rotation in weather." Such a comment reflects the deficiencies of present theories, and calls for a new model of the Earth.
Aside from the 11-year and 22-year cycles, there is also the 45-year Double-Hale solar magnetic cycle reflected in storminess and high tide. The all-planet synod, when all the planets are on one side of the Sun, which can influence solar activity, creates a 178- to 179-year solar cycle that is reflected in Greenland ice cores, and Hudson Bay sediment anomalies.
Solar cycles are correlated with sea level, atmospheric pressure, and surface air temperatures in summer, and especially over the oceans in winter. Ozone varies with the long-term solar cycle, as does upper atmospheric airborne particles (stratospheric aerosols), and shifts in climate. The extent of Newfoundland's ice cover for the period between 1860 and 1988 has been correlated with solar activity. An influx of air from the uppermost (stratospheric) layer of the atmosphere into the layer below (troposphere) has been observed three to four days after solar flares. What is particularly surprising to scientists is that observations indicate a source of ionization from below; a completely unexpected phenomenon (yet predictable with FEM).
Weather phenomena, in general, are correlated with the solar cycle. Particle flow ionizes the atmosphere, producing a partial vacuum that alters air pressure. One of the most widespread effects of solar activity is the alteration of atmospheric pressure worldwide. Solar wind particles that enter the polar regions alter pressure, especially above 100 kilometres (62 miles), and the troposphere, varying markedly with the solar cycle. However, the effect is much greater than anticipated, and while the effect is expected for only the circum-polar regions, it is instead global.
Solar relationships have been confirmed for many of FEM's processes, such as the magnetosphere, sea level, the upper atmosphere, and the physical processes of the atmosphere. Atmospheric electricity, temperature, pressure, and circulation are also correlated with solar activity. As could be predicted from an understanding of FEM, every geophysical aspect of weather-related phenomena is affected, even down to the ground and below the oceans (ridges, deep sea currents, etc.).
The Interplanetary Magnetic Field (IMF) also has an influence on weather, revealing another aspect of the solar-FEM linkage. Low-pressure systems (troughs), or cyclones in the North Hemisphere, are at a minimum about one day after the IMF sector boundary crossing (SBC) is carried past the Earth. A sector boundary crossing (SBC) is when the IMF shifts from away from the Sun to towards the Sun, or vice versa.
Increased geomagnetic activity takes place around solar maximum. The size of storms, referred to as the Vorticity Area Index (VAI), increases during solar maximum, when the SBC sweeps by. The vertical electric field near the South Pole of the geomagnetic field (GMF) is at a minimum a few days after the SBC, but local winter shows a large effect (amplitude) with a maximum, for example, at Zugspitze in the Alps. Expected of an ionizing source, increases in isotopes (i.e., Be7) at mountain peaks are also observed. When the IMF is moving away from the Sun, towards the Earth, it increases storms (troughs). FEM's solar linkage is responsible, as can be seen in this statement: "The physical mechanism may relate to the topological condition that an Interplanetary Magnetic Field line directed away from the Sun may merge with a geomagnetic field line going into the northern polar regions."
The flux of electrons is greater when the IMF is moving away from the Sun (a few hundred eV; an order of magnitude). The SBC is correlated with lightning and thunderstorm frequencies, and the electric field variations conform to FEM, as they were noted simultaneously in the Arctic, Antarctic, and mid-latitude mountain tops. The formation of storms (atmospheric vorticity) takes place along with the SBC. Shortly after solar flares, atmospheric electricity responds with increasing electric fields and lightning frequency. Likewise, electrons increase in the upper atmosphere (stratosphere), during geomagnetic storms. For example, a high correlation exists between the 11-year solar cycle and thunderstorms in England with storm size (VAI) increasing one to four days after solar flares, and other solar eruptions.
A particularly strong solar correlation exists for high latitude thunderstorms, but not equatorial thunderstorms. The Fields are located on the northern and southern extremes of the equatorial bulge, and point away from the equator, hence thunderstorms should display this relationship. Ionizing radiation from solar activity can cause large effects on atmospheric conductivity down to at least 15 kilometres (10 miles) at mid-latitudes (the effect is deeper, as will be discussed). Again, the Fields are along mid-latitudes with the exception of the polar Fields. Oceanic thunderstorms maximize in the northern latitudes during winter. Such an effect is due to the fact that the Fields are in the oceans and are more active in winter. Likewise, the North Pacific near the Japanese Current, and the North Atlantic by the Gulf Stream, the Japanese and North Atlantic Fields, are the largest sources of convective clouds that respond to solar activity. Moreover, the Brazilian Field (South Atlantic Geomagnetic Anomaly; SAGA) displays enhanced lightning frequency. Depending on whether it is solar minimum or maximum, global thunderstorm activity increases by 50% to 70% four days after major flares. The solar-FEM linkage and Field locations are conspicuous in these data.
The centre of mass of the Solar System is known as the barycenter. Shifts in the barycentre occur whenever Jupiter and another of the large planets are aligned on one side of the Sun. These shifts affect solar activity, and in turn, weather is affected.
Times of less distance include periods such as the Sporer and Maunder Minimums in solar activity. Just prior to these minimums there were solar maximums that produced climate and radiocarbon (C14) fluctuations that, after a lag time, are noted during these minimums. The Maunder Minimum was a time of the Little Ice Age when glaciers most recently advanced down mountains around the world. The Little Ice Age was a time for low values in long-term temperatures for all seasons, enhanced variability of temperatures from spell to spell, and year to year, and an enlarged polar ice cap and frigid air over the Northern Hemisphere that was accompanied by jet streams that were weaker and further south than those of today.
Phases that are influential are typical of magnetic field interactions with 0o and 90o as potential peaks, and 180o and 270o as troughs in the swinging Sun. This motion around the barycentre is linked with solar activity, climate, earthquakes, and volcanic activity. In contrast to conventional thought, but expected of FEM: "This previously unsuspected relationship tends to corroborate the reality of a solar motion-solar activity-terrestrial systems linkage."
This entire relationship with regard to weather is all the more obvious in studies on the effects of the 11-year solar cycle on climate. Numerous studies have been conducted that indicate the reality of a 11-year solar cycle in climate. For example, the 11-year cycle is conspicuous in worldwide air temperature, air pressure, and ozone.
The 11-year solar cycle has been correlated with air temperature, air pressure, droughts, floods, lake levels, snowfall, tree abundance, and tree-ring growth. Rivers, such as the Nile, Ohio River, and Parana River (Buenos Aires, Argentina), rise and fall in accord with solar activity. Numerous examples exist that reveal an 11-year solar cycle influence on weather-related phenomena.
Auroras in the upper atmosphere are followed by thunderstorms in the lower atmosphere. However, the energies of the auroras are many times less than the thunderstorms, and any connection cannot be accounted for by present models of the Earth. Even, ball lightning is correlated with solar activity. Lightning and thunderstorms increase after solar flares and IMF sector boundary crossings, as well. Lightning and thunderstorms occur mostly around the 30o to 40o latitudes, and along the longitudes of the Fields. The role of the Fields can also be noted in the numerous examples of luminous phenomena that issue from above the cloud tops into the upper atmosphere, ionosphere and magnetosphere, as well as the other way around. The only model that can explain all of these observations completely is FEM.
Studies of the geomagnetic activity have revealed that major geomagnetic fluctuations occur shortly after both equinoxes. During the equinoxes the Earth's poles are basically perpendicular to the ecliptic plane allowing greater interaction with the IMF. Also during the solstices one pole interacts with the IMF more than usual. Because of this, a number of phenomena are more active at those times, one of which is weather.
Reports of visually observed lightning discharges from thunderstorm cloud tops into the clear air above also cluster around the equinoxes and solstices. At times these lightning strokes are greater than the cloud-to-ground strokes. They involve strong electric fields arising from "large local accumulations of charge" (i.e., masses of ionized particles). One of the more recent observations occurred on 22-23 September 1989, around the equinox, and were associated with hurricane Hugo. This discloses how the atmosphere was highly ionized around the time of the development of a devastating hurricane, and the source of the particles came from below.
Other incidents that were recorded were noted within less than a month of either the equinox or solstice, with the March equinox represented the most. For example, on 11 April 1965 there was a cloud-top stroke noted, at which point 47 tornadoes touched down in Illinois, Indiana, Iowa, Michigan, Ohio and Wisconsin. The mechanism responsible is, conventionally speaking, unknown. However, it is known that it involves the acceleration of electrons (and other particles) upward in a direct process from below that penetrates the upper atmosphere (ionosphere) and magnetosphere. The observations are totally supportive of what would be expected of FEM.
The discussion then continues with a review of a myriad of studies on the solar cycle in weather. Solar wind plasma effects alone cannot explain these correlations.