Publications

Google MyCitations          Google Scholar        PubMed Search 

Edited Book:

“Multi-scale Quantum Models for Biocatalysis: Modern Techniques and Applications

Darrin M. York and Tai-Sung Lee, editors, Springer Verlag, 2009.

as part of the book series: “Challenges and Advances in Computational Chemistry and Physics”, with series editor Jerzy Leszcynski, and published by Springer Verlag (2007).

The purpose of this book is to provide a modern perspective of current state-of-the-art methods for the multi-scale modeling of biocatalysis, and they types of problems that can be addressed by these techniques. 

Journal articles (current h-index: 21): (corresponding author: 15 (underlined); first author: 33)

51. Radak, K. B., Lee, T.-S., He, P., et alA framework for flexible and scalable replica-exchange on production distributed CI”

Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery, Article #26

50. Lee, T. –S.On the negative regulation and activation of JAK2: A novel hypothetical model”

Molecular Cancer Research, 2013, 11:811-814, perspective article.

49. Giese, I. et al, “A variational linear-scaling framework to build practical, efficient next-generation orbital-based quantum force fields”

Journal of Chemical Theory and Computation, 2013, 9: 1417-1427

48. Lee, T. –S., Radak, B..K.; Pabis A.;  York, D. M.,A New Maximum Likelihood Approach for Free Energy Profile Construction from Molecular Simulations”

Journal of Chemical Theory and Computation, 2013, 9:153-164

47. Giambasu, G. M.; Lee, T. –S.; Scott, W. G.; York D. M.,Mapping L1 Ligase ribozyme conformational switch”

Journal of Molecular Biology, 2012, 2:106-122

46. Lee, T.-S.; Giambasu, G. M.; Harris, M. E.; York, D. M., “Characterization of the Structure and Dynamics of the HDV Ribozyme in Different Stages Along the Reaction Path”,

The Journal of Physical Chemistry Letters, 2011, 2:2538-2543

45. Lee, T. –S. ; Kantarjian, H.; Ma, W.; Yeh, C.-H.; Cortes, J.;  Albitar, M., “Effects of clinically relevant MPL mutations in the transmembrane domain revealed at the atomic level through computational modeling”,

PLoS One, 2011, 6:23396.

44. Ma, W.; Giles, F.; Zhang, X.; Wang, X.; Zhang, Z.; Lee, T-S.; Yeh, C-H.;  Albitar, M.,Three novel alternative splicing mutations in BCR-ABL1 detected in CML patients with resistance to kinase inhibitors””,

International Journal of Laboratory Hematology 2011, 33:326-331

43. Wong, K. -Y.; Lee, T. –S.; York D. M.,Active participation of Mg2+ ion in the reaction coordinate of RNA self-cleavage catalyzed by the hammerhead ribozyme”

Journal of Chemical Theory and Computation (comm.), 2011, 7:1-3.

42. Lee, T.-S.; Giambasu, G. M.; York, D. M.,Insights into the Role of Conformational Transitions and Metal Ion Binding in RNA Catalysis from Molecular Simulations

In Annual Reports in Computational Chemistry; Ralph, A. W.; Ed.; Elsevier, 2010; Vol. Volume 6; 68-200.

41. Lee, T.-S.; York, D. M. "Computational mutagenesis studies of hammerhead ribozyme catalysis."

Journal of the American Chemical Society, 2010, 132: 13505-13518.

40.  Lee, T.-S.; Giambasu, G. M. York, D. M.,Insights into the role of conformational transitions and metal ion binding in RNA catalysis from molecular simulations.” in

Annual Reports in Computational Chemistry, 6:168-200, A. W. Ralph, Ed.; Elsevier. 2010

39. Lee, T. –S.; Ma, W.; Zhang, X.; Giles. F.; Cortes, J.; Kantarjian, H.; Albitar, M.,“BCR-ABL1INS35 is not uncommon in CML patients and is related to resistance and sensitivity to inhibitors in CML treatment””,

Molecular Cancer Therapeutics, 2010, 9:772.

38. Giambasu, G. M.; Lee, T. –S.; Sosa, C.P.; Robertson, M.P.; Scott, W. G.;  York D. M.,Identification of dynamical hinge points of the L1 ligase molecular switch”

RNA, 2010, 16:769-780.

37. Lee, T. –S.; Ma, W.; Zhang, X.; Kantarjian, H.; Albitar, M.,“Structural effects of clinically observed mutations in JAK2 exons 13-15: comparison with V617F and exon 12 mutations”

BMC Structural Biology, 2009, 9:58-71

36. Lee, T. –S.; Giambasu, G. M.; Sosa, C.; Scott, W.G.;  York D. M.,Threshold occupancy and specific cation binding modes in the hammerhead ribozyme active site are required for active in-line conformation

Journal of Molecular Biology, 2009, 388:195-206

35. Lee, T. –S.; Potts, S. J.;  Albitar, M., “Basis for resistance to imatinib in 16 BCR-ABL mutants as determined using molecular dynamics

Recent Patents on Anti-Cancer Drug Discovery, 2009, 4:164-73.

34. Lee, T. –S.; Giambasu, G.M.; Nam, K.; Guerra, F.; Giese, T. J.;  York, D. M., "Unraveling the mechanisms of ribozyme catalysis with multi-scale simulations", (book chapter) in

“Multi-scale Quantum Models for Biocatalysis: Modern Techniques and Applications”, York D. M. and Lee, T. –S. , (Editors), Springer Verlag, New York, 2009.

33. Lee, T. –S.; Ma, W.; Zhang, X.; Giles. F.; Kantarjian, H.;  Albitar, M., “Mechanisms of constitutive activation of JAK2-V617F revealed at the atomic Level through molecular dynamics simulations”,

Cancer, 2009, 115:1692-1700.

32. Lee, T. –S.; Ma, W.; Zhang, X.; Giles. F.; Cortes, J.; Kantarjian, H.; Albitar, M., “BCR-ABL alternative-splicing as a common mechanism for imatinib resistance: evidence from molecular dynamics simulations”, 

Molecular Cancer Therapeutics, 2008, 7:3834-3841.

31. Lee, T. –S. and York D. M.,Origin of mutational effects at the C3 and G8 positions on hammerhead ribozyme catalysis from molecular dynamics simulations”,

Journal of the American Chemical Society (communication), 2008, 130: 7168-7169.

30. Martick, M.; Lee, T. –S.; York, D. M.; Scott, W.,Solvent structure and hammerhead ribozyme catalysis”,

Chemistry & Biology, 2008, 15:332-342.

29. Lee, T. –S.; Silva-López, C. , Martick, M.;  Scott, W.G.;  York D. M.,Role of Mg2+ in hammerhead ribozyme catalysis from molecular simulation”,

Journal of the American Chemical Society, 2008, 130:3053 -3064

28. Lee, T. –S.; Potts, S. J.; Kantarjian, H.; Cortes, J.; Giles. F.; Albitar, M., “Molecular basis explanation of imatinib resistance of BCR-ABL due to T315I and P-Loop mutations from molecular dynamics simulations”,

Cancer, 2008, 112:1744-1753

27. Lee, T. –S.,Reverse conservation analysis reveals the specificity determining residues of cytochrome P450 Family 2 (CYP 2)”,

Evolutionary Bioinformatics, 2008, 4:7-16

26. Kagan, R.M.; Lee, T. –S.; Ross, L.; Lloyd Jr.; R.M.; Lewinski, M.A.; Potts, S.J., “Molecular basis of antagonism between K70E and K65R tenofovir-associated mutations in HIV-1 reverse transcriptase”,

Antiviral Research, 2007, 75:210-218

25. Lee, T. –S.; Silva-López, C. , Martick, M.; Scott, W.G.; York D. M.,Insight into the role of Mg2+ in hammerhead ribozyme catalysis from x-ray crystallography and molecular dynamics simulation”,

Journal of Chemical Theory and Computation, 2007, 3:325-327 (Communication).

24. Lee, T. –S.; Potts, S. J.;  Mcginniss, M. J.; Strom, C.M.;  “Multiple property tolerance analysis for ehe evaluation of missense mutations

Evolutionary Bioinformatics, 2006, 2:345-356.

23. Lee, T. –S.; et al,QCRNA 1.0: a database of quantum calculations for RNA catalysis

Journal of Molecular Graphics and Modeling, 2006, 25, 423-433.

22. Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.-S.; Caldwell, J.; Wang, J.;  Kollman, P. A.,“A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations

Journal of Computational Chemistry, 2003, 24:1999-2012.

21. Lee, T. –S.,Fast solvent accessible surface calculation based on fullerene-like grid points”, Accelrys’ Internal Communication, 2002. (The algorithm is used in the DSModeling 1.1 Product.)

20. Lee, T. –S.*, Chong, L. T.*, Chodera , J. and Kollman, P. A., “An alternative explanation for the catalytic proficiency of orotidine 5'-phosphate decarboxylase” (*first two authors contributed equally to the work)

Journal of the American Chemical Society, 2001, 123: 12837-12848.

19. Lee, T. –S. ; Kollman, P.A.,Thymidylate synthase: free energy calculations for estimating inhibitor binding affinities” in

 Free energy calculation  in rational drug design”, M. R. Reddy and M. D. Elion, Eds.; Kluwer, Oct. 2001

18. Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.-S.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.;  Cheatham, T. E., ”Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models”,

Accounts of Chemical Research, 2000, 33:889-897.

17. Lee, T.-S.; Massova, I.; Kuhn, B.; Kollman, P. A.,QM and QM-FE simulations on reactions of relevance to enzyme catalysis: trypsin, COMT, b-lactamase and pseudouridine synthetase”,

Journal of Chemical Society Perkin Trans. 2, 2000, 3:409-415.

16. Lee, T.-S.; Kollman, P. A.,Theoretical studies suggest a new antifolate as a more potent inhibitor of thymidylate synthase

Journal of the American Chemical Society, .2000, 122: 4385-4393.

15. Lee, T.-S.; Kollman, P. A.,Quantum calculations of the nucleophilic attack in tRNA pseudouridine synthesis”,

Journal of the American Chemical Society, 1999, 121: 9928-9931.

14. Robles, J.; Mayorga, O.; Lee, T. -S.; Díaz, D., “PM3 semiempirical electronic structure calculation of capped and uncapped CdS nanoparticles “,

Nanostructured Materials, 1999, 11:283-286.

13. Lewis, J.P.; Liu, S.; Lee, T.-S.; Yang, W, “A linear-scaling quantum mechanical investigation of cytidine deaminase.”

Journal of Computational Physics, 1999, 151:242-263

12. Lee, T.-S.; Lewis, J.P.;  Yang, W., “Linear-scaling quantum mechanical calculations of biological molecules: the divide-and-conquer approach.”

Computational Materials Science, 1998, 12:259-277.

11. Zhang, Y.; Lee, T.-S.;  Yang, W.,  “A pseudobond approach to combine quantum mechanical and molecular mechanical methods.

Journal of Chemical Physics, 1999, 110 :46-54.

10. Lee, T.-S. and Yang, W.,  “Frozen density matrix approach for electronic structure salculations

International Journal of Quantum Chemistry, 1998, 69:397-404.

9. Pan, W.; Lee, T.-S.;  Yang, W.,  “Parallel implementation of divide-and-conquer semiempirical quantum chemistry calculations.”

Journal of Computational Chemistry, 1998, 19:1101-1109.

8. Lewis, J.P.; Carter, C.W.; Hermans, J.; Pan, W.; Lee, T.-S.;  Yang, W.,  “Active species for the ground-state complex of cytidine deaminase: a linear-scaling quantum mechanical investigation.”

Journal of the American Chemical Society, 1998, 120:5407-5410.

7. York, D. M.; Lee, T.-S.;  Yang, W.,  “Quantum mechanical treatment of biological macromolecules in solution using linear-scaling electronic structure methods.”

Physical Review Letters, 1998, 80:5011-5014.

6. York, D. M.; Lee, T.-S.;  Yang, W.,  “Parameterization and efficient implementation of a solvent model for linear-scaling semiempirical quantum mechanical calculations of biological macromolecules.”

Chemical Physics Letters, 1996, 263:297-304.

5. York, D. M.; Lee, T.-S.;  Yang, W.,  “Quantum mechanical study of aqueous polarization effects on biological macromolecules.”

Journal of the American Chemical Society, 1996, 118:10940-10941.

4. Lee, T.-S.; York, D. M.;  Yang, W.,  “Linear-scaling semiempirical quantum calculations for macromolecules.”

Journal of Chemical Physics, 1996, 105:2744-2750.

3. Yang, W. and Lee, T.-S.,  “A density-matrix divide-and-conquer approach for electronic structure calculations of large molecules.”

Journal of Chemical Physics, 1995, 103:5674-5678.

2. Lee, T.-S.; York, D. M.;  Yang, W.,  “A new definition of atomic charges based on a variational principle for the electrostatic potential energy.”

Journal of Chemical Physics, 1995, 102:7549-7556.

1. Lee, T.-S.; Hwang, L.-P., “Influence of dipole-dipole cross-relaxation on spectal lineshapes of methyl protons in inversion-recovery experiments.”

Journal of Magnetic Resonance, 1990, 89 51-58