Publications
Preprints:
A. Patrascu, Finite convergence of the inexact proximal gradient method to sharp minima, submitted, 2021.
A. Patrascu and P. Irofti, Computational complexity of Inexact Proximal Point Algorithm for Convex Optimization under Holderian Growth, submitted (pdf), 2021.
A. Patrascu and P. Irofti, Truncated convex models for robust learning, preprint, 2022.
Journal papers
A. Patrascu and P. Irofti, On finite termination of an inexact Proximal Point algorithm, Applied Mathematics Letters, 2022.
A. Patrascu and P. Irofti, Stochastic proximal splitting algorithm for stochastic composite minimization, Optimization Letters, 2021, https://doi.org/10.1007/s11590-021-01702-7 .
A. Patrascu, New nonasymptotic convergence rates of stochastic proximal point algorithm for stochastic convex optimization problems, Optimization, 1-29, 2020, DOI:10.1080/02331934.2020.1761364.
I. Necoara, P. Richtarik and A. Patrascu, Randomized projection methods for convex feasibility problems: conditioning and convergence rates, SIAM Journal on Optimization, 29(4), 2814–2852, 2019. (pdf)
A. Patrascu and I. Necoara, Nonasymptotic convergence of stochastic proximal point algorithms for constrained convex optimization, in Journal of Machine Learning Research, 18:1-42, 2018. (pdf)
A. Patrascu and I. Necoara, On the convergence of inexact projection first order methods for convex minimization, in IEEE Transactions on Automatic Control, 63(10):3317-3329, 2018. (pdf)
I. Necoara, A. Patrascu and F. Glineur, Complexity certifications of first order inexact Lagrangian and penalty methods for conic convex programming, in Optimization Methods & Software, 34(2): 305-335, 2019. (pdf)
I. Necoara and A. Patrascu, Iteration complexity analysis of dual first order methods for conic convex programming, in Optimization Methods and Software, 31(3): 645-678, 2016. (pdf)
A. Patrascu, I. Necoara and Q. Tran-Dinh, Adaptive inexact fast augmented Lagrangian methods for constrained convex optimization, in Optimization Letters, 11(3): 609--626, 2017. (pdf)
A. Patrascu and I. Necoara, Random coordinate descent methods for \ell_0 regularized convex optimization, in IEEE Transactions on Automatic Control, 60(7): 1811-1824, 2015. (pdf)
A. Patrascu and I. Necoara, Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization, in Journal of Global Optimization, 61(1):19-46, 2015. (received Best Paper Award for a paper published in JOGO in 2015). (pdf)
I. Necoara and A. Patrascu, A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints, in Computational Optimization and Applications, 57(2): 307-337, 2014. (pdf)
Books and book chapters
P. Irofti, A. Patrascu and A. Baltoiu, Fraud Detection in Networks, chapter in Enabling AI Applications in Data Science, Editors: A.-E. Hassanien, M. H. N. Taha, N. E. Mahmoud, ISBN:978-3-030-52066-3, Springer, DOI:10.1007/978-3-030-52067-0, 2021.
A. Patrascu, C. Paduraru and P. Irofti, Stochastic Proximal Gradient Algorithm with Minibatches. Application to Large Scale Learning Models, chapter in Enabling AI Applications in Data Science, Editors: A.-E. Hassanien, M. H. N. Taha, N. E. Mahmoud, ISBN: 978-3-030-52066-3, Springer,DOI:10.1007/978-3-030-52067-0, 2021.
I. Necoara, A. Patrascu and A. Nedich, Computational complexity certifications for inexact dual first-order methods and its application to real-time MPC, in Developments in Model-Based Optimization and Control, Editors: S. Olaru, A. Grancharova, F.Lobo Pereira, Springer. (pdf)
I. Necoara, D. Clipici, A. Patrascu, Metode de optimizare numerica. Culegere de probleme, Editura Politehnica Press, 2014.
Selected conference papers
P. Irofti, C. Rusu and A. Patrascu, Dictionary Learning with Uniform Sparse Representations for Anomaly Detection, ICASSP, 2022 (pdf).
A. Baltoiu, A. Patrascu and P. Irofti, Graph Anomaly Detection Using Dictionary Learning, accepted to IFAC, 2020.
I. Necoara and A. Patrascu, A random coordinate descent algorithm for singly linear constrained smooth optimization, In Proceedings of Mathematical Theory of Networks and Systems, 0210, 2012, http://www.mtns2012.conference.net.au/.
Andrei Patrascu and Ion Necoara, A random coordinate descent algorithm for large-scale sparse non-convex optimization, In Proceedings of European Control Conference, 2013.
Ion Necoara and Andrei Patrascu, A random coordinate descent algorithm for optimization problems with composite objective function: application to SVM problems, The Fourth International Conference on Continuous Optimization, Lisbon, 2013.
A. Patrascu, I. Necoara, V. Nedelcu and D. Clipici, A proximal alternating minimization method for \ell_0-regularized nonlinear optimization problems: application to state estimation, Conference on Decision and Control, 2014.
A. Patrascu, I. Necoara and P. Patrinos, A proximal alternating minimization method for l0 - regularized nonlinear optimization problems: application to state estimation, Proceedings of the 53nd Conference on Decision and Control, Los Angeles, 2014.
A. Patrascu and I. Necoara, Coordinate descent methods for l0 regularized optimization problems, SIAM Conference on Optimization, San Diego, 2014.
I. Necoara and A. Patrascu, Efficient Random Coordinate Descent Algorithms for Large-Scale Structured Nonconvex Optimization, SIAM Conference on Optimization, San Diego, 2014.
I. Necoara and A. Patrascu, Unified analysis of primal/dual methods for conic convex optimization, invited paper at the 22nd International Symposium on Mathematical Programming, 2015.
I. Necoara and A. Patrascu, On the behavior of first-order penalty methods for convex programming when Lagrange multipliers do not exist, invited paper in session Large scale optimization at Conference on Decision and Control, 2015.
I. Necoara, A. Patrascu and R. Findeisen, Computational complexity of a dual fast gradient method for convex optimization: application to embedded MPC, Conference on Decision and Control, 2015.
I. Necoara and A. Patrascu, OR-SAGA: Over-relaxed stochastic average gradient mapping algorithms for finite sum minimization, accepted to ECC 2018.
PhD thesis:
Andrei Patrascu (under the supervision of Ion Necoara), Efficient first order methods for sparse convex optimization, 2015 (pdf).