On the nonsymplectic involutions of the Hilbert square of a K3 surface
Izvestiya: Mathematics, 83(4), p. 731 - 742, aug 2019.
https://arxiv.org/abs/1805.10481
The Degree of the Tangent and Secant Variety to a Projective Surface
Advances in Geometry, 2019, Retrieved 18 December 2019 from doi:10.1515/advgeom-2019-0015
https://arxiv.org/abs/1705.08719
Finiteness of Klein actions and real structures on compact hyperkähler manifolds
Math., Ann. 375, p.1783–1822 (2019).
DOI:10.1007/s00208-019-01876-7.
https://arxiv.org/abs/1806.03864
Calabi-Yau 4-folds of Borcea-Voisin type from F-Theory
Pacific Journal of Mathematics, Vol. 299 (2019), No.1, 1-31.
DOI:10.2140/pjm.2019.299.1.
https://arxiv.org/abs/1706.01689
Families of Calabi-Yau elliptic fibrations in P(L^a + L^b + O_B)
Rocky Mountain Journal of Mathematics, Volume 48, Number 7 (2018), 2135-2162
DOI: 10.1216/RMJ-2018-48-7-2135
https://arxiv.org/abs/1402.4383
Del-delbar-Complex symplectic and Calabi-Yau manifolds: Albanese map, deformations and period map
Annals of Global Analysis and Geometry, 54(3), 377-398
DOI: 10.1007/s10455-018-9607-3
https://arxiv.org/abs/1711.05107
Complex Symplectic Structures and the del-delbar-lemma
Annali di Matematica Pura ed Applicata (1923-), 2018, 197.1: 139-151
DOI: 10.1007/s10231-017-0672-1
https://arxiv.org/abs/1612.08183
Calabi-Yau 3-folds of Borcea-Voisin type and elliptic fibrations
Tohoku Mathematical Journal, Vol. 68, no. 4, Second Series.
DOI: 10.2748/tmj/1486177214
http://arxiv.org/abs/1312.3481
The automorphism group of the Hilbert scheme of two points on a generic projective K3 surface
In the volume "K3 surfaces and their moduli", 1-15, Progr. Math., 315, Birkhäuser/Springer
DOI: 10.1007/978-3-319-29959-4_1
http://arxiv.org/abs/1410.8387
Dolbeault-Massey triple products of low degree
Journal of Geometry and Physics, Volume 98, December 2015, Pages 300-311, ISSN 0393-0440
DOI: 10.1016/j.geomphys.2015.08.016
http://www.sciencedirect.com/science/article/pii/S0393044015002077
A new CY elliptic fibration and tadpole cancellation
J. High Energy Phys. 2011, no. 10, 031, 20 pp
DOI: 10.1007/JHEP10(2011)031
http://arxiv.org/abs/1107.3589
Kodaira dimension of almost Kähler manifolds and curvature of the canonical connection
https://arxiv.org/abs/1908.11328
Accepted for publication in Annali di Matematica Pura ed Applicata.
Non-symplectic involutions on manifolds of K3^{[n]}-type
https://arxiv.org/abs/1902.05397
Accettato per la pubblicazione su Nagoya Mathematical Journal.
On a Lefschetz-type phenomenon for elliptic Calabi-Yaus
https://arxiv.org/abs/1901.10146
Crepant resolutions of Weierstrass threefolds and non-Kodaira fibres
http://arxiv.org/abs/1307.7997
On elliptic Calabi-Yau threefolds in P^2-bundles
Tesi di dottorato di Andrea Cattaneo; relatore Prof. Bert van Geemen
http://hdl.handle.net/2434/217720
...automorfismi di superfici di Kodaira.
...dimensione di Kodaira per varietà quasi complesse.
...studio di problemi legati alla densità potenziale dei punti razionali su varietà algebriche.
...legame tra il teorema della sezione iperpiana di Lefschetz e fibrazioni ellittiche su varietà di Calabi-Yau.
...varietà complesse con struttura simplettica olomorfa.