On the nonsymplectic involutions of the Hilbert square of a K3 surface
Izvestiya: Mathematics, 83(4), p. 731 - 742, aug 2019.
https://arxiv.org/abs/1805.10481
The Degree of the Tangent and Secant Variety to a Projective Surface
Advances in Geometry, 2019, Retrieved 18 December 2019 from doi:10.1515/advgeom-2019-0015
https://arxiv.org/abs/1705.08719
Finiteness of Klein actions and real structures on compact hyperkähler manifolds
Math., Ann. 375, p.1783–1822 (2019).
DOI:10.1007/s00208-019-01876-7.
https://arxiv.org/abs/1806.03864
Calabi-Yau 4-folds of Borcea-Voisin type from F-Theory
Pacific Journal of Mathematics, Vol. 299 (2019), No.1, 1-31.
DOI:10.2140/pjm.2019.299.1.
https://arxiv.org/abs/1706.01689
Families of Calabi-Yau elliptic fibrations in P(L^a + L^b + O_B)
Rocky Mountain Journal of Mathematics, Volume 48, Number 7 (2018), 2135-2162
DOI: 10.1216/RMJ-2018-48-7-2135
https://arxiv.org/abs/1402.4383
Del-delbar-Complex symplectic and Calabi-Yau manifolds: Albanese map, deformations and period map
Annals of Global Analysis and Geometry, 54(3), 377-398
DOI: 10.1007/s10455-018-9607-3
https://arxiv.org/abs/1711.05107
Complex Symplectic Structures and the del-delbar-lemma
Annali di Matematica Pura ed Applicata (1923-), 2018, 197.1: 139-151
DOI: 10.1007/s10231-017-0672-1
https://arxiv.org/abs/1612.08183
Calabi-Yau 3-folds of Borcea-Voisin type and elliptic fibrations
Tohoku Mathematical Journal, Vol. 68, no. 4, Second Series.
DOI: 10.2748/tmj/1486177214
http://arxiv.org/abs/1312.3481
The automorphism group of the Hilbert scheme of two points on a generic projective K3 surface
In the volume "K3 surfaces and their moduli", 1-15, Progr. Math., 315, Birkhäuser/Springer
DOI: 10.1007/978-3-319-29959-4_1
http://arxiv.org/abs/1410.8387
Dolbeault-Massey triple products of low degree
Journal of Geometry and Physics, Volume 98, December 2015, Pages 300-311, ISSN 0393-0440
DOI: 10.1016/j.geomphys.2015.08.016
http://www.sciencedirect.com/science/article/pii/S0393044015002077
A new CY elliptic fibration and tadpole cancellation
J. High Energy Phys. 2011, no. 10, 031, 20 pp
DOI: 10.1007/JHEP10(2011)031
http://arxiv.org/abs/1107.3589
Kodaira dimension of almost Kähler manifolds and curvature of the canonical connection
https://arxiv.org/abs/1908.11328
Accepted for publication in Annali di Matematica Pura ed Applicata.
Non-symplectic involutions on manifolds of K3^{[n]}-type
https://arxiv.org/abs/1902.05397
Accepted for publication on Nagoya Mathematical Journal.
On a Lefschetz-type phenomenon for elliptic Calabi-Yaus
https://arxiv.org/abs/1901.10146
Crepant resolutions of Weierstrass threefolds and non-Kodaira fibres
http://arxiv.org/abs/1307.7997
On elliptic Calabi-Yau threefolds in P^2-bundles
Ph.D thesis; supervisor Prof. Bert van Geemen
http://hdl.handle.net/2434/217720.
...automorphisms of Kodaira surfaces.
...Kodaira dimension for almost complex manifolds.
...potential density of rational points on algebraic manifolds.
...link between Lefschetz' hyperplane theorem and elliptic fibrations on elliptic Calabi-Yau manifolds.
...complex manifolds with holomorphic symplectic structures.