Dr. Alfonso Rojas Domínguez
INTELIGENCIA COMPUTACIONAL
& APRENDIZAJE AUTOMÁTICO
INTELIGENCIA COMPUTACIONAL
& APRENDIZAJE AUTOMÁTICO
Evolutionary Design of Texture Descriptors
Hyper parameter tuning of SVM classifiers
SVM kernels based on Orthogonal Polynomials
modeling the game of Go
DCC2014A-PGLC: Diseño Híper-heurístico de Máquinas de Soporte Vectorial para Clasificación de Patrones. ▹(PR) (ML) (SVM) (HO)
MCC2018A-FPOI: Técnicas de aprendizaje profundo para clasificación multi-objeto en imágenes digitales. ▹(DL) (MO)
MCC2017B-EPS: Diseño metaheurístico de redes neuronales profundas para reconocimiento de Patrones. ▹(DL) (AV)
MCC2016A-VCJR: Técnicas de aprendizaje profundo con aplicaciones en visión artificial. ▹(DL) (AV)
MCC2015B-MGCR: Caracterización de Superficie Mediante Vistas Ortogonales Simultáneas para la Inspección Automatizada de Productos. ▹ (VI) (IP)
MCC2015B-HAJA: Polinomios Ortogonales de Gegenbauer para el reconocimiento automatizado de imágenes. ▹ (PR) (OP) (AV)
MCC2015B-GBA: Diseño de un Solver basado en Metaheurísticas para SVMs Aplicadas a Problemas de Clasificación. ▹(PR) (MO) (ML)
MCC2014B-LLR: Inspección Visual Automatizada para Control de Calidad en una Línea de Producción. ▹(VI) (IP)
MCC2014B-FMJP: Sistema de Visión Artificial para Detección y Clasificación de Billetes para Invidentes. ▹(AV) (RP)
Inteligencia Computacional & Aprendizaje Automático incluye las líneas de investigación de:
Optimización Computacional (Computational Optimization) (CO)
Algoritmos Metaheurísticos (Metaheuristic optimization) (MO)
Algoritmos Evolutivos e Hiperheurísticas (Hyperheuristic Optimization) (HO)
Reconocimiento de Patrones (Pattern Recognition) (PR)
Redes Neuronales (Artificial Neural Networks) (ANN)
Máquinas de Vectores de Soporte (Support Vector Machines) (SVM)
Aprendizaje Automático / Aprendizaje de Máquina (Machine Learning) (ML)
Aprendizaje Profundo (Deep Learning) (DL)
Visión Artificial (Artificial Vision) (AV)
Google Profile ORCID SCOPUS GoogleScholar email: Alfonso.Rojas @ gmail.com
My research interests are (clicking on the links will open new pages): Deep Learning, Machine Learning,
Pattern Recognition, Computer Vision/Image Processing & Analysis, Computational Intelligence & Optimization.
I desire to consolidate my position as a professional researcher in the field of deep learning, machine learning, computational intelligence and image processing and analysis, preferably in an academic-type environment that promotes creativity and collaboration with other experts. I am challenge-driven, committed and determined. I can also describe myself as very resourceful, responsible, and capable of working under pressure.I offer expertise in the mentioned fields, as well as other related subjects such as optimization and automation.
Work Experience
2025 - 2035: I am a Research Fellow with the National Secretary of Sciences, Humanities, Technolgies and Innovation (SECIHTI) formerly CONAHCYT, commisioned at the Centre for Computing Research CIC-IPN. Visit our laboratory.
2014 - 2024: I was a Research Fellow with the National Council of Science and Technology CONACYT at TecNM-León.
2013 - 2014: I was an associated researcher at CINVESTAV Guadalajara. My work there was focused on the development of a wearable aiding system for the blind. The system included GPS localization, object detection/recognition, document recognition, place recognition, and other functionalities. Here is a news videoclip about this project.
2012 - 2013: I was with the Centro de Investigación en Matemáticas, A. C. (CIMAT, Center for Research in Mathematics), my work was focused on the design and implementation of a fingerprint recognition system. Particularly, my objective was the development of efficient algorithms that enable the automated processing of digitized images, including filtering, image segmentation and registration, feature extraction for classification, and fingerprint-database indexing.
2008 to 2012: I worked as a postdoctoral fellow at the Instituto de Biotecnologia (Institute of Biotechnology, IBT-UNAM). The IBT produces original research in areas such as Cell Engineering, Molecular Microbiology, Developmental Genetics, Molecular Medicine, etc. My research was focused on the automated characterization of bubble- and drop-size distributions occurring in multiphase fermentation processes. In particular, my objective was the development of efficient algorithms for automated image segmentation and statistical pattern classification, through which, said characterization could be achieved.