1. DE FREITAS, T. H., PÉREZ, V. H. J., MIRANDA, A. J.
On Bettin numbers of the gluing of germs of formal complex spaces.
Mathematische Nachrichten, v. 295., p. 1-19, 2022.
2. DE FREITAS, T. H., PÉREZ, V. H. J., MIRANDA, A. J.
Gluing of analytic space germs, invariants and Watanabe's conjecture;
Israel Journal of Mathematics, v. 1., p. 1-27, 2021.
3. MIRANDA, A. J., SOUZA, T. A, BARROS, R. M. O.
Polinômio de Alexander via Linguagem Python.
REMAT: REVISTA ELETRÔNICA DA MATEMÁTICA, v. 6., p. 1-16, 2020.
4. HERNANDES, M. E., MIRANDA, A. J., PEÑAFORT-SANCHIS, G.
An algorithm to compute a presentation of pushforward modules.
Topology and its Applications, 2018. https://doi.org/10.1016/j.topol.2017.11.025
https://arxiv.org/pdf/1703.03357.pdf
(See implementation presentationmatrix in Singular).
5. MIRANDA, A. J., SAIA, M. J., SOARES, L. M. F.
On the number of topological orbits of complex germs in K classes (xy, x^a+y^b)
Proceedings of the Royal Society of Edinburgh, 2017. DOI:10.1017/S0308210516000111
6. MIRANDA, A. J., SAIA, M. J.
A presentation matrix associated to the discriminant of a co-rank one map-germ from C^n to C^n.
Contemporary Mathematics, 2016.
(See implementation Presentation CnCn Cor1 in Maple and Singular).
7. A. J. MIRANDA, V. H. JORGE-PÉREZ, E. C. RIZZIOLLI, M. J. SAIA.
Geometry and equisingularity of finitely determined map germs from C^n to C^3, n > 2.
Revista Matemática Complutense, 2016. DOI 10.1007/s13163-015-0187-5.
8. MIRANDA, A. J., RIZZIOLLI, E. C., SAIA, M. J.
JP Journal of Geometry and Topology, 2013.
9. JORGE PEREZ, V. H., MIRANDA, A. J., SAIA, M. J.
Singularidades de Aplicações Estáveis e Contagem de Invariantes Via Ideais de Fitting.
Livro publicado pela editora EDUFPI, Teresina - PI, 2012. ISBN: 978-85-7463-555-2.
10. JORGE PEREZ, V. H., MIRANDA, A. J., SAIA, M. J.
Counting Singularities via Fitting Ideals.
International Journal of Mathematics, 2012.
11. JORGE-PÉREZ, V. H.; MIRANDA, A. J.
Milnor Numbers and Equisingularity of Map Germs From C^(n+3) to C^3.
Contemporary Mathematics. American Mathematical Society, 2008.
12. MIRANDA, A. J.
Fractais: Conjuntos de Julia e Conjuntos de Mandelbrot.
Sigmae, v. 1, p. 110-118, 2012.
13. BARROS, Rui Marcos de Oliveira; MIRANDA, A. J.
KnotDet - Software para cálculo de Determinante de Nós Clássicos.
Revista Tecnológica (UEM), Maringá, v. 11, p. 51- 62, 2002.
Slide-School-WorkShop-2018-Lecture01 Slide-School-WorkShop-2018-Lecture02 Slide-School-WorkShop-2018-Lecture03