References

[1] T.F. Cootes, C.J. Taylor, D.H. Cooper, J. Graham, Active shape models-their training and application, Computer Vision and Image Understanding 61 (1995) 38–59.

[2] T.F. Cootes, G.J. Edwards, C.J. Taylor, Active appearance models, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, Springer, 1998, pp. 484–498.

[3] M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, International Journal of Computer Vision 1 (1988) 321–331.

[4] C. Xu, J. Prince, Gradient vector flow: a new external force for snakes, in: Proceeding of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 66–71.

[5] L. Staib, J. Duncan, Boundary finding with parametrically deformable models, IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (1992) 1061–1075.

[6] P. Gotardo, K. Boyer, J. Saltz, S. Raman, A new deformable model for boundary tracking in cardiac MRI and its application to the detection of intra-ventricular dyssynchrony, in: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 736–743.

[7] B. van Ginneken, A.F. Frangi, R.F. Frangi, J.J. Staal, B.M.T.H. Romeny, M.A. Viergever, Active shape model segmentation with optimal features, IEEE Transactions on Medical Imaging 21 (2002) 924–933.

[8] N. Paragios, R. Deriche, Geodesic active contours and level sets for the detection and tracking of moving objects, IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2000) 266–280.

[9] G. Edwards, T. Cootes, C. Taylor, Face recognition using active appearance models, in: H. Burkhardt, B. Neumann (Eds.), Computer Vision – ECCV’98, Lecture Notes in Computer Science, vol. 1407, Springer, Berlin/Heidelberg, 1998, pp. 581–589.

[10] Y. Wang, A. Narayanaswamy, C.-L. Tsai, B. Roysam, A broadly applicable 3-d neuron tracing method based on open-curve snake, Neuroinformatics 9 (2011) 193–217.

[11] T. McInerney, D. Terzopoulos, Deformable models in medical image analysis: a survey, Medical Image Analysis 1 (1996) 91–108.

[12] C.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), Springer-Verlag, New York, Inc., Secaucus, NJ, USA, 2006.

[13] R.O. Duda, P.E. Hart, Use of the hough transformation to detect lines and curves in pictures, Communications of the ACM 15 (1972) 11–15.

[14] D.H. Ballard, Generalizing the hough transform to detect arbitrary shapes, Pattern Recognition 13 (1981) 111–122.

[15] C. Xu, J.L. Prince, Snakes shapes and gradient vector flow, IEEE Transactions on Image Processing 7 (1998) 359–369.

[16] J. Radon, On the determination of functions from their integral values along certain manifolds, IEEE Transactions on Medical Imaging 5 (1986) 170–176.

[17] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer Science+Business Media, 2002.

[18] H. Bouma, A. Vilanova, L.J. van Vliet, F.A. Gerritsen, Correction for the dislocation of curved surfaces caused by the psf in 2d and 3d ct images, IEEE Transactions on Pattern Anaysis and Machine Intelligence 27 (2005) 1501–1507.

[19] M. Abramowitz, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover Publications, Incorporated, 1974.

[20] D.M. Wuescher, K.L. Boyer, Robust contour decomposition using a constant curvature criterion, IEEE Transactions on Pattern Analysis and Machine Intelligence 13 (1991) 41–51.

[21] D.A. Forsyth, J. Ponce, Computer Vision: A Modern Approach, Prentice Hall Professional Technical Reference, 2002.

[22] B. Cohen, A. Voorhees, S. Vedel, T. Wei, Development of a theoretical framework for analyzing cerebrospinal fluid dynamics, Cerebrospinal Fluid Research 6 (2009). 2+.

[23] C. Li, C. Xu, C. Gui, M. Fox, Distance regularized level set evolution and its application to image segmentation, IEEE Transactions on Image Processing 19 (2010) 3243–3254.

[24] Y. Boykov, G. Funka-Lea, Graph cuts and efficient n–d image segmentation, International Journal of Computer Vision 70 (2006) 109–131.

[25] D.H. Kim, U.K. Cheang, L. Kohidai, D. Byun, M.J. Kim, Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: A tool for fabrication of microbiorobots, Applied Physics Letters 97 (2010) 173702.

[26] Y. Ou, D.H. Kim, P. Kim, M.J. Kim, A.A. Julius, Motion control of tetrahymena pyriformis cells with artificial magnetotaxis: model predictive control (MPC) approach, in: 2012 IEEE International Conference on Robotics and Automation, St. Paul, USA.

[27] Q. Wang, Y. Ou, A.A. Julius, K.L. Boyer, M.J. Kim, Tracking tetrahymena pyriformis cells using decision trees, in: 2012 International Conference on Pattern Recognition, Tsukuba Science City, Japan.

[28] E. Meijering, O. Dzyubachyk, I. Smal, W.A. van Cappellen, Tracking in cell and developmental biology, Seminars in Cell & Developmental Biology 20 (2009) 894–902.

[29] Y. Wang, A. Narayanaswamy, B. Roysam, Novel 4-d open-curve active contour and curve completion approach for automated tree structure extraction, in: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1105–1112.

[30] L. Yao, P. Suryanarayan, M. Qiao, J. Wang, J. Li, Oscar: On-site composition and aesthetics feedback through exemplars for photographers, International Journal of Computer Vision 96 (2012) 353–383.

[31] M. Freeman, The Photographer’s Eye: Composition and Design for Better Digital Photos, Focal Press, 2007.

[32] D. duChemin, Photographically Speaking: A Deeper Look at Creating Stronger Images, Voices That Matter, Pearson Education, 2011.

[33] R. Courant, D. Hilbert, Methods of Mathematical Physics, vol. 1, Interscience Publishers, Inc., New York, NY, 1953.