FROM SCOTT, FOUND IN JACK'S VERSION OF MANUSCRIPT
Y = X + e
X ^ e
Y ~ N(20, 7)
e ~ N(0, 5) _________ _____
X ~ N(E(Y) - E(e), Ö V(Y) -V(e)) ~ N(20 - 0, Ö72 - 52) » N(20, 4.9)
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
func E() return mean($1)
func V() return variance($1)
// independence, normal
Y ~ N(20, 7)
e ~ N(0, 5)
clear; show Y; show e in darkgray
X ~ N(E(Y) - E(e), sqrt(V(Y) - V(e)))
clear; show X; show Y in gray
Xindependent = X
// perfect dependence, normal
Y ~ N(20, 7)
e ~ N(0, 5)
clear; show Y; show e in darkgray
X ~ N(E(Y) - E(e), sqrt(V(Y)) - sqrt(V(e)))
clear; show X; show Y in gray
a = convolve(X,e,perfect)
clear; show a in red; show Y; show X;
Y
~normal(range=[1.96919,38.0308], mean=20, var=49)
a
~(range=[1.96919,38.0308], mean=20, var=[44.7,49])
Xperfect = X
// specified correlation, normal
Y ~ N(20, 7)
e ~ N(0, 5)
r = 0.5
clear; show Y; show e in darkgray
X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
clear; show X; show Y in gray
r = 1; X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .9;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .8;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .7;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .6;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .5;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .4;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .3;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .2;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .1;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = 0;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.1;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.2;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.3;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.4;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.5;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.6;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.7;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.8;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.9;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -1;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = 0;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
clear; show X; show Xindependent in red
r = 1; X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
clear; show X; show Xperfect in red
// unknown correlation, normal
Y ~ N(20, 7)
e ~ N(0, 5)
X ~ N(E(Y) - E(e), [sd(Y) - sd(e),sd(Y) + sd(e)])
clear; show X; show Y in gray
r = -1;Xopposite ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
show Xperfect,Xopposite in red
// Frechet, normal marginals
Y ~ N(20, 7)
e ~ N(0, 5)
X ~ Y - e
clear; show X; show Y in gray
r = -1;Xopposite ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
show Xperfect,Xopposite in red
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// distributional p-boxes (i.e., normals with interval parameters)
// these formulations may not be quite correct (they may need backcalc formulas)
Y = N( [19,21], [6.5,7.5])
e = N( [-0.1,0.1], [4.8,5.2])
clear; show Y; show e in darkgray
// independence, normal
X ~ N(E(Y) - E(e), sqrt(V(Y) - V(e)))
clear; show X; show Y in gray
Xindependent = X
// perfect dependence, normal
X ~ N(E(Y) - E(e), sqrt(V(Y)) - sqrt(V(e)))
a = convolve(X,e,perfect)
clear; show a in red; show Y; show X;
Y
~normal(range=[-0.31872,40.3187], mean=[19,21], var=[42.2,56.3])
a
~(range=[-1.54905,41.5491], mean=[18.79,21.2], var=[24,63])
Xperfect = X
// specified correlation, normal
r = 0.5
X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
clear; show X; show Y in gray
r = 1; X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .9;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .8;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .7;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .6;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .5;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .4;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .3;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .2;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = .1;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = 0;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.1;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.2;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.3;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.4;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.5;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.6;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.7;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.8;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -.9;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = -1;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
r = 0;X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
clear; show X; show Xindependent in red
r = 1; X ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
clear; show X; show Xperfect in red
// unknown correlation, normal
X ~ N(E(Y) - E(e), [sd(Y) - sd(e),sd(Y) + sd(e)])
clear; show X; show Y in gray
r = -1;Xopposite ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
show Xperfect,Xopposite in red
// Frechet, normal marginals
X ~ Y - e
clear; show X; show Y in gray
r = -1;Xopposite ~ N(E(Y) - E(e), sqrt(V(e)*(r^2-1)+V(Y)) - r*sqrt(V(e)))
show Xperfect,Xopposite in red
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// general p-boxes (i.e., don’t have to be normal)
// p-boxes
y = N( [18,22], [6,9])
e = N( [-1,1], [4,5])
x = N( decon(mean(e), mean(y)), sqrt( decon(var(e),var(y))))
clear; show y; show x in blue
Y = x |+| e
clear; show y; show Y in red
x = N( mean(y) - mean(e), sqrt( var(y) - var(e)))
clear; show y; show x in blue
Y = x |+| e
clear; show y; show Y in red
70/4
17.5
// big epistemic uncertainty
clear; show Y; show e in darkgray
Y = N( 20, 10)
e = N( [-3,3], [4,6])
Y = N( [15,25], [7,11])
e = N( 0, 5)
Y = N( [15,25], [7,11])
e = N( [-3,3], [4,6])
Y = N( [15,25], [7,11])
e = N( [-5,5], [ 0, 5] )
e = [-5,5]
// independence, normal
X ~ N(E(Y) - E(e), sqrt(V(Y) - V(e)))
X ~ N(decon(E(e), E(Y)), sqrt(decon(V(e),V(Y))))
clear; show X; show Y in gray
a = X |+| e
clear; show a in red; show Y; show X;
Xindependent = X
// perfect dependence, normal
X ~ N(E(Y) - E(e), sqrt(V(Y)) - sqrt(V(e)))
X ~ N(decon(E(e),E(Y)), decon(sqrt(V(e)),sqrt(V(Y))))
a = convolve(X,e,perfect)
clear; show a in red; show Y; show X;
Y
~normal(range=[-0.31872,40.3187], mean=[19,21], var=[42.2,56.3])
a
~(range=[-0.31872,40.3187], mean=[19,21], var=[29.5,56.3])
Xperfect = X