High-fidelity spin transport


After the first demonstration of room temperature spin transport in graphene, it was quickly realized that such 2D materials are relevant for both fundamental spintronics and future applications. In the past, we conducted several pioneering spin transport studies in metallic graphene and semiconducting black phosphorus and bilayer graphene-based spin valves. We also enhanced the weak SOC of graphene by substrate and adatom engineering techniques. By taking the advantage of proximity coupling between graphene and monolayer WSe2, we demonstrated optical spin injection into graphene. To discover more, you can check our recent review article on two-dimensional spintronics.

While there are long-standing challenges that need to be addressed for exploiting the full potential of 2D spintronics applications (e.g. realizing logic operations for low-power, beyond CMOS electronic), one of the new and exciting directions is employing superconducting Bogoliubov quasiparticles or magnons available in magnetic insulators to carry spin information rather than using electrons. We are interested in investigating spin transport properties of layered quantum materials for fundamental and applied research.

Related Publications:

1. Highly anisotropic spin transport in ultrathin black phosphorus, L. Cording et al, Nature Materials, 1-7 (2024). https://doi-org.libproxy1.nus.edu.sg/10.1038/s41563-023-01779-8 

2. Colloquium: Spintronics in graphene and other two-dimensional materials, A. Avsar, H. Ochoa, F. Guinea, B. Özyilmaz,  B. J. van Wees, and I. J. Vera-Marun, Rev. Mod. Phys. 92, 021003 (2020).

3. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes, A. Avsar, J.Y.Tan, M. Kurpas, M. Gmitra, K. Watanabe, T. Taniguchi, J. Fabian, and B. Özyilmaz, Nature Physics, 13, 888–893 (2017). 

4. Optospintronics in graphene via proximity coupling, A. Avsar, D. Unuchek, J Liu, O.L.Sanchez, K. Watanabe, T. Taniguchi, B. Özyilmaz  and A. Kis, ACS Nano, (2017). 

5. Electronic spin transport in dual-gated bilayer graphene, A. Avsar, I. J. Vera-Marun, J. Y. Tan,G. K. W. Koon, K. Watanabe, T. Taniguchi, S. Adam and B. Özyilmaz, , npg Asia Materials, 8, e274 (2016). 

6. Spin-orbit proximity effect in graphene, A. Avsar, J. Y. Tan, J. Balakrishnan, G. K. W. Koon, J. Lahiri, A. Carvalho, A. Rodin, T. Taychatanapat, E. C. T. O’Farrell, G. Eda, A. H. Castro Neto, and B. Özyilmaz, Nature Communications, 5,4875 (2014).

7. Observation of long spin relaxation times in bilayer graphene at room temperature, T. Y. Yang, J. Balakrishnan, F. Volmer, A. Avsar, M. Jaiswal, M. Jaiswal, J. Samm, S. R. Ali, A. Pachoud, M. Zheng, M. Popinciuc, G. Guntherodt, B. Beschoten, and B. Özyilmaz, Physical Review Letters, 107, 0427206 (2011).

8. Toward wafer scale fabrication of graphene based spin valves, A. Avsar, T. Y. Yang, S. Bae, J. Balakrishnan, F. Volmer, M. Jaiswal, Z. Yi, S. R. Ali, G. Guntherodt, B. H. Hong, B. Beschoten, and B. Özyilmaz, Nano Letters, 11, 2363 (2011). Highlighted at Nature Materials. 





Heterostructures of graphene and transition metal dichalcogenides enable direct optical spin injection (top-left) or direct charge-to-spin conversion (bottom-right). (Image prepared with Alberto Ciarrocchi (A.C.)).