Теория
Емкостной экспресс датчик (далее датчик) – устройство для оперативного снятия формы вторичного напряжения, импульсов впрыска форсунки и т.д., последующей передачи его на один из входов регистрирующего оборудования. Основное отличие экспресс датчика от “обычного” емкостного датчика заключается в возможности быстро доступа к трудно доступным источникам сигнала, а также в наличии оперативного регулирования чувствительности датчика.
Датчик состоит из держателя, емкостной пластины, которая гальванически соединена с сигнальным проводом, компенсационной емкости между сигнальным проводом и экраном, экранированного кабеля и соответствующего разъема для подключения датчика к входу регистрирующего оборудования.
Снятие формы напряжения датчиком основано на наличии паразитной емкостной связи, возникающей между источником сигнала и емкостной пластиной датчика. Как известно величина емкости (емкостной связи) прямо пропорциональна площади емкостных пластин, т.е. чем больше пластина, тем больше уровень сигнала на выходе, и обратно пропорциональна расстоянию между пластинами, т.е. чем меньше расстояние от источника сигнала до емкостной пластины датчика, тем больше уровень сигнала на выходе. Компенсационная емкость предназначена для коррекции формы сигнала искаженной дифференциальной цепочкой (паразитной емкостной связью). Чем больше величина компенсационной емкости, тем меньше будет искажена форма сигнала, но и тем меньше будет амплитуда сигнала на выходе датчика.
Изготовление
Для изготовления емкостного экспресс датчика в домашних условиях необходимо:
1. Экранированный кабель длинной 2-3м. Для примера взят 2,5м щуп оканчивающийся BNC разъемом и зажимами типа крокодил.
2. Монета 5 копеек используемая как емкостная пластина.
3. Металлическая линейка длинной 30-40 см. Именно металлическая взята с целью экранирования от внешних электромагнитных наводок и лучшей упругости.
4. Компенсационная емкость – выводной керамический конденсатор 33 нФ, 50 Вольт.
5. Изолента для крепления всех элементов и изоляции емкостной пластины от металлической линейки.
Порядок изготовления:
1. Обмотать один и краев линейки изолентой (достаточно 2-3 слоя), так что бы пятачок помещенный поверх изоленты не контачил с линейкой.
2. Соединить пятачок с сигнальной жилой кабеля, линейку с экраном кабеля, а компенсационную емкость установить между сигнальной жилой и экраном кабеля.
3. Закрепить пятачок и кабель на линейке. Поверх пяточка достаточно 2-3 витков.
4. В результате должна получится следующая конструкция. Для примера рядом находится емкостной экспресс датчик компании AceLab.
Диагностика
Для снятия формы сигнала достаточно просто приложить пятачок к соответствующему источнику сигнала (ВВ провод, форсунка и т.д.).
Кроме того, необходимо учитывать, что при наличии металлического экрана между источником сигнала и датчиком (индивидуальные катушки в глубоких шахтах, форсунки в металлическом корпусе) амплитуда сигнала значительно уменьшается, иногда до нескольких милливольт. Для увеличения амплитуды необходимо отключить компенсационный конденсатор, вследствие чего амплитуда возрастет в 20-30 раз, но форма сигнала будет искажена. Для оперативного подключения / отключения компенсационной емкости, возможно, использовать небольшой переключатель, замыкающий соединение конденсатора с пятачком.
Сравнение
Так как конструкция описанного емкостного экспресс датчика на первый взгляд кажется достаточно примитивной, то приведем результаты его сравнения с промышленно выпускаемым емкостным экспресс датчиком компании AceLab. Датчик AceLab изготовлен на основании тоже принципа – паразитная емкостная связь, в качестве емкостной пластины используется полигон на печатной плате, компенсационная емкость опционально подключается с помощью тумблера возле окончания датчика.
На графике красного цвета изображен сигнал, полученный с датчика AceLab (Ск = 20 нФ), а на графике синего цвета изображен сигнал, полученный “5-ти копеечным” емкостным экспресс датчиком (Ск = 33 нФ). Оба датчика находятся рядом на одном и том же высоковольтном проводе. Как видно, форма обеих сигналов практически идентична.
“5-ти копеечный” емкостной экспресс датчик подключен к USB-приставке "АВТОАС-ЭКСПРЕСС".
На графике красного цвета изображен сигнал с форсунки снятый обычным измерительным щупом, а на графике синего цвета изображен сигнал, полученный “5-ти копеечным” емкостным экспресс датчиком (Ск отключена). Как видно, экспресс датчик также позволяет определить длительность импульса открытия форсунки, не производя при этом ни каких длительных подключений, но форма сигнала без использовании Ск значительно искажена.
Теория
Высоковольтный емкостной датчик (далее датчик) – устройство для снятия формы вторичного напряжения системы зажигания и последующей передачи его на один из входов регистрирующего оборудования.
Датчик состоит из держателя, емкостной пластины, которая гальванически соединена с сигнальным проводом, экранированного кабеля и соответствующего разъема для подключения датчика к входу регистрирующего оборудования.
Важно!
Экран кабеля датчика обязательно должен быть соединен с землей регистрирующего оборудования. Экран должен представлять собой плотную металлическую оплетку, вязанную крест на крест без просветов. Чем меньше длина участка сигнального провода кабеля без экрана – тем меньше будет электромагнитных наводок с соседних ВВ проводов.
Снятие формы вторичного напряжения датчиком основано на наличии паразитной емкостной связи, возникающей между токопроводящей жилой ВВ провода и емкостной пластиной датчика.
Из чего следует:
1. Сигнал на выходе датчика будет тем больше чем ближе емкостная пластина к токопроводящей жиле ВВ провода.
2. Влияние электромагнитных наводок с соседних ВВ проводов будет тем меньше чем меньше размер емкостной пластины и чем меньше не экранированный участок сигнального провода.
3. Величина паразитной емкостной связи всегда зависит от ВВ провода (толщины токопроводящей жилы, толщины и диэлектрической проницаемости изоляции) из чего следует, что величина сигнала на выходе датчика будет разной для одного и того же истинного значения вторичного напряжения, т.е. не возможно однозначно установить соответствие 1 В на выходе датчика – 10 КВ во вторичной цепи.
4. Емкостная связь представляет собой дифференцирующую цепочку (ФВЧ) пропускающую высокочастотные колебания (область пробоя), и не пропускающую низкочастотные колебания (область горения), т.е. форма вторичного напряжения на выходе датчика будет искажена.
Сд – емкость между токопроводящей жилой ВВ провода и емкостной пластиной датчика
Rвх – входное сопротивление регистрирующего оборудования
Свх – входная емкость не учитывается, так как она фактически в данном случае ни на что не влияет
На графике красного цвета изображен исходный сигнал (меандр 1 КГц, скважность 10%, амплитуда 1 В)
На графике синего цвета изображен сигнал, полученный на выходе дифференцирующей цепочки
Сигнал с выхода датчика без использования компенсационной емкости
Для устранения искажения формы вторичного напряжения на выходе датчика, необходимо использовать дополнительную компенсационную емкость, которая с емкостью датчик-жила образует емкостной делитель:
Без учета входного сопротивления регистрирующего оборудования, коэффициент передачи емкостного делителя определяется следующим соотношением: Kп = Сд / (Сд + Ск). Как видно из соотношения, чем больше значение емкости Ск тем меньше будет значение напряжения на выходе емкостного делителя. Для идеального емкостного делителя без учета входного сопротивления регистрирующего оборудования Ск можно взять сколь угодно малое, при этом форма сигнала на выходе делителя в точности будет соответствовать форме сигнала на его входе.
При учете входного сопротивления соотношение для определения коэффициента передачи становится гораздо объемнее, но зависимость Kп от Ск остается той же. Входное сопротивление регистрирующего оборудования на прямую не влияет на Kп, оно определяет “степень вносимого искажения”.
При увеличении входного сопротивления искажения формы вторичного напряжения значительно уменьшаются. В большинстве случаев входное сопротивления практических все осциллографов используемых для автодиагностики находится в диапазоне 1 МОм, за исключением специализированных входов предназначенных исключительно для подключения ВВ датчиков. По этому при непосредственном подключении датчика к входу осциллографа (без специализированного адаптера) Rвх также можно принять за константу, и ограничится варьированием только Ск.
Примечание!
Подключение датчика к входу осциллографа просто через резистор 10 МОм приведет к увеличению входного сопротивления и соответственно уменьшению искажения формы вторичного напряжения, но при этом примерно в десять раз уменьшиться коэффициент передачи входного тракта канала. Для увеличения входного сопротивления без уменьшения коэффициента передачи необходимо использовать промежуточный буфер (повторитель – простейший адаптер) с высоким входным сопротивлением и низким выходным сопротивлением.
Для текущих Сд (точно не известно) и Rвх (обычно 1 МОм) значение Ск подбирается исходя из компромисса:
1. Чем меньше Ск тем больше амплитуда напряжения на выходе емкостного делителя
2. Чем больше Ск тем меньше степень искажения формы вторичного напряжения
Практически значение Ск возможно увеличивать до тех пор, пока “амплитуда” напряжения на выходе емкостного делителя будет достаточно выделяться на фоне шума.
Местоположение подключения Ск: в начале кабеля (ближе к емкостной пластине) или в конце кабеля (ближе к входу регистрирующего оборудования) – практически не влияет на форму и амплитуду сигнала с выхода датчика.
На графике красного цвета изображен сигнал, полученный с ВВ датчика и Ск = 3.3 нФ подключенной на входе осциллографа, на графике синего цвета изображен сигнал, полученный с ВВ датчика и Ск = 3.3 нФ подключенной непосредственно возле емкостной пластины. Как видно форма сигналов практически одинакова, а амплитуда различается в пределах разброса номинала используемых емкостей +/- 20%.
Примеры осциллограмм вторичного напряжения снятого одним и тем же датчиком с емкостной пластиной в виде круга диаметром ~10 мм при разных значениях Ск, на стенде с DIS катушки 2112-3705010 (форма вторичного напряжения несколько отличается от привычной из-за разряда на открытом воздухе).
Ск = 470 пФ. Область горения значительно проседает, но амплитуда пробоя достигает 5 Вольт.
Ск = 1.8 нФ. Область горения также значительно проседает, амплитуда пробоя уменьшилась до 2 Вольт.
Ск = 3.3 нФ. Область горения не много проседает, амплитуда пробоя уменьшилась до 1 Вольта.
Ск = 10 нФ. Область горения практически не проседает, но и амплитуда пробоя уменьшилась до 0.4 Вольт.
Как видно при Ск = 10 нФ форма вторичного напряжения практически не искажена, а шум довольно не значительный.
Для сравнения приведены осциллограммы вторичного напряжения снятые с одного и того же ВВ провода без использования адаптера и с использованием специализированного адаптера зажигания.
На графике красного цвета изображен сигнал, полученный с ВВ датчика (Ск = 10 нФ) непосредственно подключенного к входу осциллографа. На графике синего цвета изображен сигнал, полученный с адаптера Постоловского, к которому подключен “родной” ВВ датчик Постоловского.
Как видно форма обеих сигналов практически совпадает, но с адаптера содержащего промежуточные усилители, сигнал имеет в 3 раза большую амплитуду.
Примечание!
Все адаптеры, использующие емкостные датчики искажают форму вторичного напряжения, но при высоком входном сопротивлении и достаточной Ск, вносимое искажение крайне не значительно.
Изготовление
В простейшем случае емкостной съемник это любой металлический предмет расположенный рядом с ВВ проводом, т.е. в роли емкостной пластины могут выступать зажим типа “крокодил”, фольга намотаня на ВВ провод, монетка и т.д.
Практически в качестве высоковольтного емкостного датчика рекомендуется использовать конструкцию, которая удовлетворяет следующим требованием:
1. Высокая степень защиты от пробоя
2. Малая подверженность электромагнитным наводкам от соседних ВВ проводов
3. Удобное конструктивное исполнение для быстрого подключения датчика к ВВ проводу
Примеры конструкции ВВ емкостных датчиков:
Жестяная пластинка 20x70 мм, выгибается, так что бы плотно прижиматься к ВВ проводу.
По сути, та же пластина только в изоляции.
ВВ датчик типа “прищепка”.
ВВ датчик аналогичный одной из конструкций Бош (поставляется по цене $7 / шт).
В качестве примера рассмотрим процесс изготовления ВВ датчика на основании выше приведенной конструкции компании Бош.
Для изготовления датчика необходимо:
1. Выше рассмотренная ручка ВВ датчика.
2. Экранированный кабель 1-3 м. Желательно использовать мягкий микрофонный кабель, так как при эксплуатации он намного удобнее жесткого коаксиального кабеля. Волновое сопротивление кабеля 50 или 75 Ом, значения не имеет, так как все исследуемые сигналы находятся в области низких частот.
3. Разъемы для подключения датчика к осциллографу или адаптеру зажигания BNC-FJ / BNCP / FC-022 Переходник гнездо F / BNC под F-ку (разъем один и тот же только у разных производителей / продавцов он по-разному называется).
BNC-M / FC-001 / RG58 / F разъем
Примечание!
При покупке F разъема и кабеля обращайте внимание на соответствие диаметра кабеля к диметру разъема для накрутки на кабель, иначе либо придется срезать часть изоляции кабеля для уменьшения его диаметра, либо наматывать ленту на кабель для увеличения его диаметра.
4. Сальник / гермоввод / кабельный ввод PG-7 с дюймовой резьбой
5. Емкостная пластина “пятачок” диаметром 9-10 мм
“Пятачок” возможно либо вырезать из жести, либо использовать специальный пробойник (лучше всего использовать пробойник на 8 мм, после развальцовки получится “пятачок” диаметром чуть больше 9 мм):
6. Компенсационная емкость – не полярный (лучше керамический) конденсатор номиналом от 2.2 нФ до 10 нФ на напряжение 50 Вольт (если использовать конденсатор на 1 КВ то в случае пробоя ВВ провода он все равно сгорит). Возможно использовать как выводные конденсаторы так и планарные в корпусе 1206 или 0805.
Порядок изготовления:
1. Удалить изоляцию с экранированного кабеля до оплетки, на участке 12-13 мм. Часть оплетки под снятой изоляцией вывернуть наружу и равномерно расположить вдоль кабеля. С сигнального провода снять изоляцию на участке 10-11 мм и залудить его.
2. Накрутить на кабель F разъем, так что бы он плотно держался на кабеле и хорошо контактировал с частью вывернутой оплетки. При этом сигнальный провод должен выступать на достаточную длину из F разъема для надежного контакта с центральным стержнем разъема BNC-FJ.
3. Накрутить разъем BNC-FJ на F разъем. После чего проверить наличие контакта (прозвонить тестером) между сигнальным проводом и центральным стержнем разъема BNC-FJ, между оплеткой кабеля и экраном разъема BNC-FJ и отсутствие контакта между сигнальным проводом и оплеткой кабеля.
4. Если есть сальник PG-7 то предварительно надеть его на кабель открутив с него гайку.
5. Удалить изоляцию и оплетку с противоположного конца кабеля, на участке 3-5 мм. С сигнального провода снять изоляцию на участке 2-3 мм. Припаять к залуженному сигнальному проводу емкостную пластину.
При необходимости припаять компенсационную емкость между сигнальным проводом и оплеткой.
6. Обмотать участок сигнального провода и припаеную компенсационную емкость изолентой, так что бы емкостная пластина не болталась и была поджата краем изоленты. После чего емкостную пластину обильно смазывать солидолом.
Солидол “улучшает” диэлектрическую проницаемость и устраняет скачки области горения.
На графике красного цвета изображен сигнал, полученный с ВВ датчика (Ск = 3.3 нФ) без солидола. На графике синего цвета изображен сигнал, полученный с ВВ датчика (Ск = 3.3 нФ) с использованием солидола. Без использования солидола область горения иногда “подскакивает” на 20-30%.
7. Надеть ручку ВВ датчика так, что бы емкостная пластина упиралась в дно колпачка датчика. После чего зажать кабель либо с помощью сальника PG-7 либо закрепить изолентой (при этом с датчиком нужно обращаться крайне осторожно, что бы случайно не вырвать кабель из ручки датчика).
В результате должен получится высоковольтный емкостной датчик, который возможно непосредственно подключать к одному из аналоговых (с наличием Ск) или к логическому (без Ск) входов осциллографа.
Диагностика
Пример диагностики классической системы зажигания с трамблером
Для проведения диагностики классической системы зажигания с трамблером и центральным ВВ проводом достаточно наличие всего двух ВВ датчиков: одни датчик (с наличием Ск) идет на центральный провод и один из аналоговых каналов, другой датчик (без Ск) на ВВ провод первого цилиндра и на логический канал. Датчик (без Ск) подключаемый на ВВ провод первого цилиндра используется только для разметки искр, т.е. однозначного определения соответствия искры номеру цилиндра в пределах одного полного рабочего цикла двигателя. По этому форма сигнала с датчика разметки не важна, и на первый план выходит величина амплитуды сигнала, т.е. чем больше амплитуда с датчика разметки, тем будет проще в последствии получить стабильный импульс первого цилиндра при разных оборотах коленчатого вала.
Для определенности используем следующее параметры:
ВВ датчик с встроенной Ск = 3.3 нФ подключается к первому аналоговому каналу, входной диапазон +/-5В
ВВ датчик без встроенной Ск подключается к логическому каналу, входной диапазон +/-5В
Частота дискретизации 300 КГц.
Перед началом анализа необходимо выполнить настройку логического канала (если она еще не выполнена):
1. Завершить все текущие измерения, нажав на кнопку “Стоп”.
2. Открыть окно настройки логического канала.
3. Щелкнуть по кнопке добавить и ввести название настройки, например “Детектор On”.
4. Завести двигатель автомобиля.
5. Нажать на кнопку “Пуск”.
6. Дождаться появления импульсов вторичного напряжения на графике “форма сигнала на входе логического канала” (красный график).
7. Включить детектор импульсов (флажок на панели “Настройка”).
8. Убедится что вместо “коротких” импульсов вторичного напряжения на графике идут “широкие” треугольные импульсы.
9. Задать порог сравнения, что бы ширина импульсов на выходе логического канала (синий график) была не меньше 1-2 мс и при этом не захватывались ложные импульсы от искрообразования в соседних цилиндрах.
10. При необходимости уменьшить частоту дискретизации до 50 КГц, что бы на графике было как минимум два импульса, на основании которых рассчитывается RPM, погазовать и проверить соответствие RPM.
11. Нажать кнопку “Стоп”.
12. Нажать кнопку “OK”.
13. В окне осциллографа на вкладке логического канала выбрать только что созданную настройку для логического канала. 14. Выбрать режим самописца и нажать на кнопку “Пуск”.
15. Убедится в наличии сигнала с центрального провода (парад цилиндров) и наличии на логическом канале широких импульсов разметки под ВВ импульсами соответствующими первому цилиндру.
16. Завершить текущие измерение, нажав кнопку “Стоп”.
Перед началом анализа скорректировать параметры вторничного напряжения:
17. Открыть окно настройки (Сервис / Настройка) и перейти на кладку “Анализ”.
Min / Max значения рассчитываются исходя из следующих соображений:
Напряжение пробоя Min – это среднее минимальное значение напряжения пробоя, обычно на 50% выше среднего напряжения горения, для рассматриваемого сигнала примерно 0.5 В.
Напряжение пробоя Max – это среднее максимальное значение напряжения пробоя, для рассматриваемого сигнала примерно 3 В.
Напряжение горения Min – это минимальное допустимое напряжение горения, на основании которого принимается решение о пропусках зажигания, для рассматриваемого сигнала примерно 0.2 В.
Напряжение горения Max – это среднее максимальное значение напряжения горения, т.е. для рассматриваемого сигнала примерно 1 В.
Все заданные значения довольно условны и не требуют точных расчетов.
18. После задания параметров анализа вторничного напряжения, закрыть окно настройки, нажав на кнопку “OK”.
Начало анализа:
19. Для начала анализа необходимо очистить предыдущие данные, выбрав пункт меню Файл / Новый.
20. Открыть окно анализа системы зажигания на основании вторичного напряжения.
21. Задать параметры анализируемой системы зажигания, параметры подключения и выбрать классический режим анализа.
22. При необходимости завести двигатель автомобиля.
23. Нажать на кнопку “Пуск”.
24. Если все настроено правильно, то через 2-3 секунды на экране будут отображены размеченные импульсы вторичного напряжения анализируемой системы зажигания.
В дальнейшем для начала нового анализа потребуется выполнить только пункты 19 - 24.
В сотрудничестве с нашими консультантами переработан, улучшен и предлагается в продаже новый датчик разрежения, значительно улучшенный по конструкции и характеристикам. Датчик теперь имеет новый корпус с пьезопластиной отобранной из множества, сегодня, выпускаемых разными производителями.
В конструкцию датчика включен краник, позволяющий настроить его на работу с двигателями, имеющими разный рабочий объем, количество цилиндров и разный вакуум во впускном коллекторе. Главное преимущество данного датчика это хорошая чувствительность, большой диапазон сигнала и его размах, а так же отсутствие отставания сигнала от эталона.Применение пьезоэлемента, для измерения пульсаций воздуха во впускном коллекторе двигателя, позволило отказаться от применения усиливающих и согласующих электронных компонентов, ему не нужно и питающее напряжение. Кроме всего этого, пьезоэлемент, имеет пока не превзойденные характеристики по скорости отслеживания процессов. Он успевает отследить сигнал по каждому цилиндру работающего двигателя, что неспособны делать датчики, любого типа, имеющие в своем составе электронные компоненты. Эти датчики имеют низкую скорость восстановления своего «ноля» и поэтому их сигнал искажен, он не успевает вернуться в исходное состояние к следующему циклу и, как следствие, осциллограмма не отображает реально протекающих процессов во впускном коллекторе двигателя. Применение этого датчика не ограничивается измерением пульсаций во впускном коллекторе для оценки состояния газораспределительного механизма, его с успехом применяют для измерения пульсаций картерных и выхлопных газов, что дает очень много информации о состоянии цилиндро-поршневой группы и упрощает поиск неисправностей, которые вызывают пропуски воспламенения в цилиндрах бензинового двигателя.
На нижней осциллограмме видно, что ВМТ, по данному датчику, практически не имеет расхождений с указанием ВМТ датчиком положения коленвала.
Датчик разрежения такой конструкции, с применением пьезоэлемента и сопутствующий к нему софт (описание ПО для ДР есть во встроенной справке комплекса Мотор-Мастер), разработанные компанией Трейд-М, сегодня не имеет аналогов на российском рынке и что-либо подобное, другими производителями диагностического оборудования не производится серийным способом.
Преимущество данной концепции по сравнению с тензорезисторными датчиками:
- высокая скорость реакции на изменение разрежения во впускном коллекторе бензинового двигателя,
- отсутствие необходимости в электронных согласующих устройствах, в том числе и необходимости напряжения питания,
- дешевизна пьезоэлемента и самой конструкции датчика,
- возможность настройки чувствительности датчика.
Датчик разрежения поставляется с распаянным кабелем питания и качественным экранированным кабелем с BNC разъёмом на конце, корпус датчика разборный.
Датчик универсален и его можно использовать с любым специализированным осциллографом.
Назначение
Датчик разрежения предназначен для получения осциллограммы, отражающей изменение разрежения во впускном коллекторе бензинового двигателя, по характерным точкам и участкам которой, определяется ряд параметров:
- взаимное положение коленчатого и распределительных валов,
- состояние уплотнений цилиндро-поршневой группы,
- по градусной шкале определить некоторые фазы работы ГРМ,
- соответствие взаимному положению задающего зубчатого диска и датчика положения коленчатого вала,
- методика диагностики по датчику разрежения позволяет измерять и сравнивать моменты начала открытия впускных клапанов и моменты конца закрытия выпускных клапанов двигателя, определять продолжительность фазы перекрытия клапанов для каждого цилиндра двигателя.
Порядок работы
Для проведения диагностики состояния механики двигателя по графику пульсаций разрежения во впускном коллекторе, необходимо:
- подключить датчик разрежения к впускному коллектору бензинового двигателя, прогретого и работающего в режиме холостого хода без нагрузки,
- подключить сигнальный кабель к входу осциллографа,
- настроить чувствительность датчика с помощью регулировочного винта, расположенного на входном штуцере датчика.
Суть методики диагностики, по пульсациям разрежения во впускном коллекторе, заключается в следующем:
Выпуск отработавших газов из цилиндра четырёхтактного двигателя осуществляется через канал открытого выпускного клапана, соединяющего внутренний объёмом цилиндра с выпускным коллектором двигателя. Поршень, движущийся вверх (к головке блока цилиндров) выталкивает отработанные газы из цилиндра в выпускной коллектор двигателя.
Более подробно эта тема раскрыта на нашем профильном форуме ММК: http://club.motor-master.ru/
продолжаем нашу любимую рубрику! ;) сегодня на повестке дня - новый (для меня и некоторых моих читателей) универсальный датчик, совмещающий в себе достоинства и недостатки емкостного и индуктивного датчиков.
о датчиках я писал тут и тут. идея описываемого датчика пришла с форума осциллографа diamag, подсказал же мне эту ссылку - коллега с ником Allkor. вот схема данного датчика:
в чем плюсы? это универсальный датчик. допустим мы идем диагностировать машину, которая стоит не в боксе, а, например, только что подъехала на парковку, не зная заранее какая там система зажигания и какой датчик нам понадобится - емкостной или индуктивный? этот датчик заменяет оба, соответственно не нужно тащить несколько датчиков. в "стационарных" условиях этот датчик не особо нужен, по той причине что всё равно всё под рукой - но позволит сэкономить пару рублей, если датчики покупать.
в чем минусы? ну вообще говоря емкостной датчик с одной стороны экранирован, и при правильной ориентации позволяет снимать сигнал только с одного высоковольтного провода. в данном конструктиве (моей реализации) в качестве емкостной пластины используется корпус реле, что приводит к тому что считываться будут сигналы и с рядомидущих высоковольтных проводов - если мы работаем с DIS-системой, а не с индивидуальными катушками.
переходим к конструкции. точнее, к конструкциям, ибо я собрал два варианта датчиков - в виде линейки и в виде прищепки. нам понадобятся в обоих случаях реле типа РЭС-49 или РЭС-60, или РЭК-23 с максимально возможным сопротивлением обмотки. в моем случае это порядка 1.5-2кОм. также нужны переключатели минимальных габаритов - два положения, одна группа 3 контакта; двухсторонний фильгированный текстолит/гетинакс толщиной 1.5-2мм. резистор 47кОм, лучше smd; конденсатор 4.7нФ, тоже наверно лучше smd; термоусадка соответствующего диаметра (12-16мм) для датчика типа прищепка понадобится соответственно и сама прищепка.
прорезаем дорожки в фольге дремелем или ножовочным полотном, сообразно примененных деталей и вышеприведенной схемы, ну и распаиваем всё. отличия в моем варианте - использование вместо емкостной пластины корпуса самого реле, соответственно другая корректирующая емкость (4.7 вмето 10нФ), плюс я посчитал излишним "согласующий" 51-омный резистор.
результат:
у меня применены не самые подходящие переключатели - пожалуй, стоило бы поставить помельче; ну и реле РЭС-60 с двумя группами контактов, скорее всего, будет дороже стоить. я эти реле поставил "потому что было", а потом заменил на РЭС-49 с бОльшим сопротивлением обмотки. сверху нужно затянуть в термоусадку, я уж не стал это фоткать.
вариант номер два - прищепка. в прищепке делаем отверстие под переключатель (желательно заглубиться и под реле, чтобы обеспечить минимальную толщину прищепки и соответственно расстояние от реле до провода/катушки - меньше расстояние, лучше сигнал), делаем платку для установки реле, переключателя и т.д, распаиваем, соединяем. после проверки, опять же, затягиваем в термоусадку. профи перед термоусадкой рекомендуют мазать емкостные датчики солидолом, для исключения т.н. "заброса" высокого напряжения.
готовые датчики:
осцилок нету, поверьте на слово - рисуют не хуже моих старых емкостной пластины и индуктивного датчика. сделал давным-давно, всё никак не мог проверить в индуктивном режиме - уже проверил, всё норм. на фотках может быть неправильная распайка на платах - где-то я там находил ошибку, не помню фоткал ДО того или после. такие реле как на фотках - не рекомендую, ибо сопротивление обмотки порядка 1кОм кажется, и сигнал в индуктивном режиме слабоват получается. ну и ног слишком много у них.
В последнее время так сложилось, что поделки у меня не автомобильные, а диагностические.
Взято отсюда.
Очень часто во время диагностики необходимо наблюдать разные сигналы. Исключением не является и сигнал искрообразования. По нему можно отследить очень многое : время накопление заряда, пробитие (начало искрообразования), время горения искры и затухание. В интернете и ютубе очень много инфы на эту тему.
Соответственно чтобы отследить этот сигнал нужен датчик, в нашем случае мы делаем совмещенный датчик (емкостный, индуктивный).
Все детали покупались в Чип Дипе, и несмотря на это цена (себестоимость) не превысило 200 рублей.
Дальше картинки :
Печатка вытравилось очень плохо, фоторезист год как просрочен, наклеен с пузырями и валы ламинатора тоже грязные.
Перед упаковкой в термоусадку нужно : смазать реле и его контакты литолом, после чего обмотать его фумом.
Сигнал с высоковольтного провода системы DIS.
решил таки поделиться своими датчиками с общественностью. сразу уточняю — большинство идей не мои, но все датчики я делал своими руками. врядли я расскажу что-то новое для опытных диагностов, однако для начинающих, думаю, будет полезно увидеть все датчики в одной статье.
ну что ж, приступим. для начала — система зажигания. нам нужны емкостные и индуктивные датчики.
начнем с емкостных. теория тут: mlab.org.ua/articles/do-self/34-do-self-cx.html
общие принципы — нам нужна железяка, которую мы будем прикладывать к проводу или еще куда где бежит искра. к крышке трамблера например, если бобина там внутри. место подбирается экспериментально.
из-за довольно низкого входного сопротивления осцилла форма сигнала несколько искажается, и ее нужно корректировать. для этого между сигнальным проводом и землей вешается конденсатор, емкостью ориентировочно 10нФ. емкость подбирается экспериментально, для достижения достаточно прямой полки области горения искры и при этом вменяемой амплитуды, зависит от размеров датчика. на время экспериментов я рекомендую поставить цанговые гнездышки, и в них тыкать конденсаторы. быстро и удобно. у меня они так и остались до сих пор. ;)
корректирующий кондер нужен только для «измерительного» датчика, датчик первого цилиндра в такой корректировке не нуждается, ибо там важна не форма сигнала, а его амплитуда.
первый датчик — банальная пластина стеклотекстолита 2х3см. на одну сторону экран кабеля, на другую сигнал. параллельно конденсатор. всё в термоусадку. готово ;) конденсатор у меня получился 10нФ
это — накладной датчик, его удобно использовать для индивидуальных катушек, либо модулей, к которым особо ничем не прицепишься, либо снятия с бобин, которые стоят внутри распределителя зажигания. для систем с проводами проще и удобнее всего использовать прищепки. чем больше (шире) прищепка — тем больший кусок фольги можно к ней приклеить, и тем сильнее сигнал с датчика мы получим (шире прищепка, тем с бОльшей длиной ВВ провода будет образовываться конденсатор, и тем выше амплитуда сигнала). а задавить сигнал — всегда проще чем усилить.
берем прищепки:
вырезаем кусочки фольги, чтобы по форме они вошли в углубления прищепок.
делаем «бутерброд» — снизу у нас будет скотч двухсторонний, посередине фольга, сверху — односторонний скотч. оставляем кусочек фольги незащищенным, чтобы подпаять провод. отрисовываем по трафарету пластиночки, вырезаем, приклеиваем, припаиваем к пластинкам центральную жилу коаксиала. я использовал два таких кусочка для каждой прищепки — для двух губок. и соединял их в кучу кусочком провода. ИМХО особого смысла так делать — нет.
для датчика первого цилиндра экран со стороны датчика оставляем в воздухе, ну а со стороны осцила конечно припаиваем к корпусу разъема. для датчика напряжения — между центральной жилой и экраном припаиваем цанговую панельку — туда будем подбирать конденсаторр. у меня получился 15нФ. не забываем крепко прицепить кабель к прищепке. можно залить сверху нашу фольгу термопистолетом или эпоксидкой, для пущей надежности:
как видим, нет ничего более постоянного чем временное — датчики так и остались с панельками и вставленными в них конденсаторами.
с учетом того, что фольга приклеивается снаружи прищепки, а высоковольтный провод получается внутри — надежность и стойкость датчика к пробою — весьма высока. я больше года использовал датчики без заливки снаружи термопистолетом, и тьфу^3 ничего не произошло. потом выяснилось, что двухсторонний скотч, который я импользовал для приклеивания фильги к прищепкам — не самый хороший по качеству, и фольга начала отклеиваться и прикольно торчать в разные стороны, что меня несколько не устроило. пришлось таки залить термопистолетом.
для DIS-систем — собираем при желании две «гирлянды». удобно, что прищепки в наборе разноцветные. я использовал красные и синие прищепки для двух гирлянд (по полярности искры), зеленые — в качестве датчика первого цилиндра, розовые — в качестве датчика высокого напряжения. в гирляндах конденсатор ставится в месте соединения проводов от датчиков.
в моей ситуации мне крайне редко оказались нужны датчики первого цилиндра и гирлянды для DIS — лично мне оказалось быстрее проверять искру по одному циилиндру, а не обвешивать кучей датчиков. плюс, у меня есть железный минский мотортестер, и системы с распределителем я как правило смотрю именно им, а для дис-систем и индивидуальных катушек использую USB-осциллограф. поэтому датчик высокого напряжения я сделал еще один, по аналогии с накладной пластиной, но — для прищепки. прищепка — от какой-то вешалки для одежды.
идея в том, чтобы размеры самого датчика были побольше для увеличения амплитуды сигнала. получилось очень удобно и технологично.
в качестве датчика первого цилиндра — можно использовать индуктивный датчик. в том числе — обычный индуктивный датчик от стробоскопа. у кого есть в пользовании стробоскопы типа prolite со сменными шнурами знают, что эти шнуры имеют свойство переламываться в месте выхода из разъема. разок можно починить, потом лучше поменять. соответственно дохлые шнурки с целыми датчиками обычно наличествуют. можно катушечку там домотать, чтобы амплитуда повыше стала. а можно оставить и так:
также индуктивные датчики нам могут понадобиться для снятия сигнала с индивидуальных катушек. такие датчики можно делать на основе с принципе любой катушки индуктивности — можно из датчика коленвала, и из датчика ABS, и из реле. первый мой датчик был из датчика коленвала, но он получается слишком громоздкий. поэтому я собрал горку реле и выбрал с наибольшей амплитудой сигнала. в фирменном экспресс-датчике используется РЭК-23 02430692 0502. я такого не нашел, а те что нашел — были слабоваты по амплитуде, потому как все были 5В как правило эти реле имеют и самое низкое сопротивление. так что подобрал реле покрупнее, но с амплитудой повыше. сопротивление обмотки было что-то порядка 700 Ом. видел рекомендации вешать параллельно обмотке резистор на 22кОм для снижения добротности, и 6кОм последовательно — для уменьшения шунтирования при соединении параллельно нескольких датчиков. параллельно поставил точно, последовательно не помню, наверно тоже, с учетом входного сопротивления осцила это не мешает. в любом случае — нужно делать платку, в нее впаивать реле, и в нее же — провод к осцилу. так получается более надежное крепление провода, и можно быть уверенным в том, что он не отломает ножки реле в самый «интересный» момент.
с DIS часто вылазят нюансики. типа, если у нас машина с 4 цилиндрами — то два датчика вечно болтаются. а если сделать их всего 4, то будет не хватать для 6ц. плюс бывают машины где катушка на одну свечу одевается непосредственно, а на другую идет провод. соответственно, и половина датчиков будет другой.
тут у меня появлялась мысля сделать коробочку с кучей разъемов-тюльпанов, соединить ее с осциллом удлинителем для автоусилка (4 канала), и подключать к ней датчики в нужных количествах и конфигурациях. в этой же коробочке можно поставить корректирующие емкости, а то и собрать усилитель с высоким входным сопротивлением и более правильной формой сигнала на выходе. усилитель с входным сопротивлением порядка 10 МОм я собирал, эффект очень положительный, сигнал практически не искажается, и корректирующие емкости могут оказаться совсем не нужны — в зависимости от конструкции датчиков. но конструкция не прижилась — уж больно это все громоздко, плюс внешнее питание. ну и, как я уже писал — мне больше по душе пришлась «экспресс» диагностика — по очереди просмотрел сигналы по цилиндрам и радуйся жизни.
с системой зажигания разобрались. дальше — датчик разрежения.
берем баллончик от газа для зажигалок. желтенький такой, тонкий, думаю они везде одинаковые. пьезик от часов «монтана» (помните такие?) или аналогичный по диаметру. желательно чтобы под рукой завалялись какие-нить детали от капельниц, но это непринципиально. ну и гнездо для подключения — можно «тюльпан», можно BNC. я поставил тюльпан. (я, кстати, сторонник именно тюльпанов. BNC — они круто, конечно, но больше предназначены для высокочастотных сигналов, особой необходимости применять их в автомобильном осциле — нет. плюс тюльпаны банально безопаснее — если дергуть за провод, то в случае тюльпана он банально выскочит из гнезда, а в случае BNC — выломает гнездо)
колпачок сверлим, прикручиваем гнездо. баллончик разрезаем возле самого верха. дальше придумываем что сделать с трубочкой к которой будет присоединяться шланжик. это зависит от конструкции клапана в баллончике и фантазии. для меня самым простым вариантом оказалось выкинуть нафиг родной клапан и воткнуть переходничок от капельницы — это трубочка с утолщением в середине. разрезал пополам. важно, чтобы оно внутри не торчало и не упиралось в пьезик. дальше берем пьезик, вклеиваем на место. я пробовал два варианта — на силикон, и на двухсторонний скотч (тонкий! не такой как для молдингов, в милиметр толщиной) и сверху термопистолетом. работают оба варианта. припаиваем провода, защелкиваем. датчик готов!
на фотках пьезик немного другой. это не имеет принципиального значения, важно чтобы по диаметру подходил. у меня два датчика, с разными пьезиками — работают немного по-разному, но одинаково хорошо ;)
доработка. зажим на шланжик между датчиком и коллектором — для уменьшения сечения и скачков выходного сигнала. я сделал из гайки и винта. шланг продели через гайку, в одной из граней засверлились и нарезали резьбу, туда винт, который зажимает шланг. под винт можно подложить полоску металла, чтобы не портить шланг. можно краник поставить какой-нить.
применение, думаю, понятно — это измерение резрежения во впускном коллекторе и измерение пульсаций на вакуумном выходе регулятора давления топлива — с него снимается шланг с впускного коллектора, глушится, а на РДТ одевается датчик. по сигналу с него можно оценить состояние форсунок.
крайний датчик — датчик вибрации. кажется именно так его называют. или пульсаций? я уже запутался, честно говоря. идея, к сожалению, тоже не моя, моя почему-то «не выстрелила» :( мой первый вариант был с другим пьезиком, он как-бы сразу с камерой был, я думал будет круто — нет, не круто. работает, но плохо. значит делаем вот так:
та же прищепка, пьезик «монтана», и кусок пористой резины.
этот датчик позволяет смотреть пульсации топлива на моторах без обратки. одеваем прищепку на подающий шланг — и радуемся красивому сигналу пульсаций давления топлива.
работает, как ни странно, и на пластиковых топливопроводах.
при измерении пульсций топлива рекомендую синхронизироваться не от искры, а от сигнала с первой форсунки. тогда не будет заморочек о тактах впуска-выпуска и о том в каком цилиндре идет впрыск, когда в первом — искра. также, при подключении еще и датчика первого цилиндра — мы можем убедиться в каком режиме у нас идет впрыск, чтобы не ошибиться, когда форсунки работают не по одной. потому как проверка пульсаций топлива актуальна ТОЛЬКО в случе, если форсунки управляются индивидуально.
для синхронизации по форсункам и снятия сигнала с других датчиков — нам понадобится еще один шнур, или переходники. фоток тут не будет, опишу на пальцах. идея в том, чтобы использовать провода от тестера. значит нужно сделать либо провод от осцила, который заканчивается гнездами как у тестера (в магазине радиодеталей ключевое слово «банан»), либо переходник со стандартного удлинителя от осцила на эти гнезда. также на выходе такого переходника могут быть не гнезна («мамы»), а «папы» — в них замечательно вставляются старые «крокодилы», что тоже бывает нужно.
гнезда «тюльпаны» с проводом, кстати, можно добыть совершенно безвоздмездно. во-первых это разъемы от магнитол. во-вторых — часто с видеокартами идут такие проводочки. они в 90% случаев нафиг никому не нужны, и скапливаются на комповых фирмах в просто неимоверных количествах.
и емкостную пластину, и индуктивный датчик — очень удобно приклеивать на двухсторонний скотч. это если есть необходимость длительного снятия сигнала таким датчиком.
индуктивным датчиком также можно смотреть пульсации тока в проводе от генератора (очень красиво), и видимо в проводе к стартеру — тут не пробовал. думается, по пульсациям тока в проводе стартера можно оценить относительную компрессию.
����� - �����������, ������ ���������.
������������ � ���������� �������.
���� ��� ���������� �������, ������ ���� �������� ������ �� ��������, �� �������� ���������� ������� �� ��������� ����, � � ���� ������� ��� ���������� ��� ��������� ��������.
������ � ��������� ����.https://youtu.be/2kKWfszBSN4
Одноканальный емкостной сенсор - AT42QT1012 - описание
Cs-заряд зондирования образца конденсатора. Требуемое значение Cs зависит от толщины панелью и его диэлектрической проницаемости. Более толстые панели требуют больших значений Cs. Типичные значения которые 2,2 нФ до 50 нФ в зависимости от требуемой чувствительности; большие значения требования Cs выше стабильность и лучше диэлектрические для обеспечения надежной зондирования.