Published articles
On Brouwer's fixed point theorem, Topology Proceedings, 60:119-126, 2022, http://topology.nipissingu.ca/tp/reprints/v60/
Existence of a smooth Hamiltonian circle action near parabolic orbits and cuspidal tori, Regul. and Chaotic Dyn., 26(6):732-741, 2021,
with E.A. Kudryavtseva, 10.1134/S1560354721060101Recent advances in the monodromy theory of integrable Hamiltonian systems, Indag. Math., 32(1):193-223, 2021,
with H.W. Broer and K. Efstathiou, 10.1016/j.indag.2020.05.001Topology change of level sets in Morse theory, Ark. Mat., 58(2):333-356, 2020,
with A. Knauf, 10.4310/ARKIV.2020.v58.n2.a6Hamiltonian monodromy and Morse theory, Comm. Math. Phys., 375:1373-1392, 2020,
with H. W. Broer and K. Efstathiou, 10.1007/s00220-019-03578-2Scattering invariants in Euler's two-center problem, Nonlinearity, 32(4):1296-1326, 2019,
with H.R. Dullin, K. Efstathiou, and H. Waalkens, 10.1088/1361-6544/aaf542Parallel Transport along Seifert Manifolds and Fractional Monodromy, Comm. Math. Phys., 356(2):427-449, 2017,
with K. Efstathiou, 10.1007/s00220-017-2988-5An Obstruction to Delaunay Triangulations in Riemannian Manifolds, Discret. Comput. Geom., 59(1):226-237, 2017,
with Jean-Daniel Boissonnat, Ramsay Dyer, and Arijit Ghosh, 10.1007/s00454-017-9908-5Monodromy of Hamiltonian Systems with Complexity 1 Torus Actions, J. Geom. Phys, 115:104-115, 2017,
with K. Efstathiou, 10.1016/j.geomphys.%2016.05.014Knauf's Degree and Monodromy in Planar Potential Scattering, Reg. Chaot. Dyn., 21(6):697-706, 2016,
with H. Waalkens, doi:10.1134/S1560354716060095Semi-local Liouville Equivalence of Complex Hamiltonian Systems Defined by Rational Hamiltonian, Topology Appl., 119:119-130, 2015, doi:10.1016/j.topol.2015.05.090
Complex Hamiltonian systems on C2 with Hamiltonian function of low Laurent degree, Vestnik Moskov. Univ., 70(2):3-9, 2015, doi:10.3103/S0027132215020011
Several Remarks Concerning (m,n)-dimensions, Topology Appl., 178:219-229, 2014, 10.1016/j.topol.2014.09.013
Transfinite Extension of Dimension Function (m,n)-dim, Topology Appl., 160(18):2514-2522, 2013, doi:10.1016/j.topol.%2013.07.045
Factorization Theorem for the Dimension (m,n)-dim, Vestnik Moskov. Univ., 67(4):14-18, 2013, doi:10.3103/S0027132213040037
Preprints
C∞ symplectic invariants of parabolic orbits and flaps in integrable Hamiltonian systems, arXiv:2110.13758, with E.A. Kudryavtseva
On the symplectic classification of one degree of freedom Hamiltonian systems, with S. Vũ Ngọc