Differential Equations
Fractional Calculus and Fractional Differential Equation
Numerical Analysis & Scientific Computing
Mathematical Modeling
Control Theory & Stability Analysis
Applied Nonlinear Analysis
Magnetohydrodynamics (MHD) & Fluid Dynamics
Time Scales Calculus
Computer Virus Modeling
AI Applications in Modelling
The publications are categorized by year:
Srinidhi, A.; Raja, R.; Alzabut, J.; Vimal Kumar, S.; Niezabitowski, M. Non-Fragile Observer-Based Dissipative Control of Active Suspensions for In-Wheel Drive EVs with Input Delays and Faults. Automation 2025, 6, 28. https://doi.org/10.3390/automation6030028
Ullah, I., Ullah, H., Nadeem, S. et al. Inclined MHD mixed convection of a Bingham fluid in a lid-driven square cavity with an embedded wavy cylinder: thermal and magnetic field interactions. J Therm Anal Calorim (2025). https://doi.org/10.1007/s10973-025-14279-5
Muhammad Usman, Javed Iqbal, Alamgir Khan, Ikram Ullah, Hasib Khan, Jehad Alzabut, Hisham Mohammad Alkhawar, A New Iterative Multi-Step Method for Solving Nonlinear Equation, MethodsX, 2025, https://doi.org/10.1016/j.mex.2025.103394.
S. Iqbal, J. Wang, J. Alzabut, A. Moumen, M. Bouye, Semi-analytic solution of two dimensional fractal-fractional order biological population model in Caputo sense, Journal of Mathematics and Computer Science, 40 (2026), no. 2, 182--195
Khan, H.; Alfwzan, W.F.; Latif, R.; Alzabut, J.; Thinakaran, R. AI-Based Deep Learning of the Water Cycle System and Its Effects on Climate Change. Fractal Fract. 2025, 9, 361. https://doi.org/10.3390/fractalfract9060361
Alzabut, J., Krushna, B.M.B. & Khuddush, M. Eigenvalues for iterative systems of higher order three-point Hadamard fractional boundary value problems. J Inequal Appl 2025, 63 (2025). https://doi.org/10.1186/s13660-025-03257-y
Nadeem, S. , Naz, S. , Ishtiaq, B. and Alzabut, J. (2025). Exact solutions for Two-dimensional flow of Fractional NTNN fluid within an oscillatory rectangular enclosure. Journal of Computational Applied Mechanics, 56(2), 457-469. doi: 10.22059/jcamech.2025.390562.1370
Saim Ahmed, Hasib Khan, Ahmad Taher Azar, Jehad Alzabut, Anti-periodic switching dynamical system with application to chaotic system: A fixed-time fractional-order sliding mode control approach, Partial Differential Equations in Applied Mathematics 14 (2025) 101213, https://doi.org/10.1016/j.padiff.2025.101213
Hasib K., Mahmoud A., D.K. Almutairi, J.F. Gómez-Aguilar, J. Alzabut, Artificial intelligence neural networking for data clustering of carbon dioxide model, Ain Shams Engineering Journal 16 (2025) 103460, https://doi.org/10.1016/j.asej.2025.103460
Khan, H., Alqurashi, W. K., Alzabut, J., Almutairi, D. K., & Azim, M. A. (2025). Artificial Intelligence and Neural Networking for an Analysis of Fractal-Fractional Zika Virus Model. Fractals. https://doi.org/10.1142/s0218348x25401437
Kamran, Sana Maqsood, Rajermani Thinakaran, Hasib Khan, Jehad Alzabut, A Logistic Growth Epidemiological SEIR Model with Computational and Qualitative Results. (2025). European Journal of Pure and Applied Mathematics, 18(2), 5944. https://doi.org/10.29020/nybg.ejpam.v18i2.5944
Srinidhi, A., Raja, R., Alzabut, J. and Bagdasar, O. (2025), Memory-Based Sampled-Data Control Scheme for Vehicle Seat Suspension System With Actuator Faults via a Looped Lyapunov Approach. Int J Robust Nonlinear Control. https://doi.org/10.1002/rnc.7981
H.R. Marasi, H. Afshari , J. Alzabut, New method of α ∗ − ψ contractions for existence and uniqueness of the solutions of fractional inclusions without using selection property, Advanced Studies: Euro-Tbilisi Mathematical Journal 18(2) (2025), pp. 79–90. DOI: 10.32513/asetmj/193220082518205
Khan U., Ali N., Ahmad I., Khan H., Almutairi D. K., Alzabut J., Azim M. A., Monkeypox dynamical system with stability and computational analysis of the transmission. J Math Comput SCI-JM. (2025); 39(3):300--324
Khan H., Alzabut J., Alqurashi W. Kh., Almutairi D. K., Applications of artificial intelligence to analyze chain reaction of Uranium illustrated by discrete Caputo's fractional mathematical model. J Math Comput SCI-JM. (2025); 39(2):263--279
Ullah, I., Ahmad, I., Ali, N. et al. Bifurcation and sensitivity for COVID-TB coinfection with simulations. Indian J Phys (2025). https://doi.org/10.1007/s12648-025-03577-1
Sohail Nadeem, Tousif Iqra, Inayat Ullah, Jehad Alzabut, Instability analysis of Reynolds nanofluid model for boundary layer flow of MHD NTNN fluid over a rotating disk with isotropic and anisotropic roughness, International Journal of Thermofluids, 2025, https://doi.org/10.1016/j.ijft.2025.101195.
Nadeem, S., Arif, M., Ullah, I. et al. MHD natural convection of nanofluid flow using a corrugated permeable medium within corrugated circular cavity. J Therm Anal Calorim (2025). https://doi.org/10.1007/s10973-025-14032-y
Ibtesam, M., Nadeem, S. & Alzabut, J. Numerical treatment of magnetohydrodynamic flow of nanofluids through free convection in a hexagonal-complex-shaped cavity having an embedded heated fin. J Therm Anal Calorim (2025). https://doi.org/10.1007/s10973-025-14019-9
Viji, James, Alzabut, Jehad, Muthulakshmi, Velu and Özbekler, Abdulah. "On nonoscillation of fractional order functional differential equations with forcing term and distributed delays" Mathematica Slovaca, vol. 75, no. 1, 2025, pp. 99-112. https://doi.org/10.1515/ms-2025-0008
H. Khan, J. Alzabut, D. K. Almutairi, W.K. Alqurashi, S. Pinelas, O. Tunc, M. A. Azim, A Coupled Nonlinear System of Integro-Differential Equations Using Modified ABC Operator. doi: 10.1142/S0218348X2540105X, Fractals 2025
H. Khan, J. Alzabut, D.K. Almutairi, H. Gulzar, W.K. Alqurashi, Data analysis of fractal-fractional co-infection covid-tb model with the use of artificial intelligence, doi: 10.1142/S0218348X25400997, Fractals 2025
Khan, H.; Alzabut, J.; Tounsi, M.; Almutairi, D.K. AI-Based Data Analysis of Contaminant Transportation with Regression of Oxygen and Nutrients Measurement. Fractal Fract. 2025, 9, 125. https://doi.org/10.3390/fractalfract9020125
Bilal, M., Khan, A., Ullah, I. et al. Application of modified extended direct algebraic method to nonlinear fractional diffusion reaction equation with cubic nonlinearity. Bound Value Probl 2025, 16 (2025). https://doi.org/10.1186/s13661-025-01997-w
Alzabut, J., Janagaraj, R., Selvam, A. G. M., Dhineshbabu, R., Khan, H. "Iterative computational results for SEIAR worm propagation model using fractal-fractional approach." Journal of Mathematics and Computer Science, 38, no. 4 (2025): 430--445
Abdulwasea Alkhazzan, Jungang Wang, Yufeng Nie, Sayed Murad Ali Shah, D.K. Almutairi, Hasib Khan, Jehad Alzabut, Lyapunov-based analysis and worm extinction in wireless networks using stochastic SVEIR model, Alexandria Engineering Journal,Volume 118, 2025, https://doi.org/10.1016/j.aej.2025.01.040.
Nadeem S, Siddiqua A, Alzabut J. Flow of SWCNT and MWCNT based hybrid nanofluids in a semi-circular enclosure with corrugated wall. Advances in Mechanical Engineering. 2025;17(1). doi:10.1177/16878132251314272
Hasib Khan, Jehad Alzabut, D.K. Almutairi, Applications of artificial intelligence for clusters analysis of uranium decay via a fractional order discrete model,Partial Differential Equations in Applied Mathematics, 2025,https://doi.org/10.1016/j.padiff.2024.101056.
Ikram Ullah, Muhammad Bilal, Dawood Shah, Hasib Khanh, Jehad Alzabut, Hisham Mohammad Alkhawar, Study of nonlinear wave equation of optical field for solotonic type results,Partial Differential Equations in Applied Mathematics, 2025,https://doi.org/10.1016/j.padiff.2024.101048.
Rehman M, Alzabut J, Tayyab M, Amir F. Interconnection Between Schur Stability and Structured Singular Values. Contemp. Math. [Internet]. 2024 Dec. 30 [cited 2025 Jan. 3];6(1):63-72. Available from: https://ojs.wiserpub.com/index.php/CM/article/view/5707
Khan, H.; Alzabut, J.; Almutairi, D.K.; Alqurashi, W.K. The Use of Artificial Intelligence in Data Analysis with Error Recognitions in Liver Transplantation in HIV-AIDS Patients Using Modified ABC Fractional Order Operators. Fractal Fract. 2025, 9, 16. https://doi.org/10.3390/fractalfract9010016
Alzabut, J.; Dhineshbabu, R.; Moumen, A.; Selvam, A.G.M.; Rehman, M.-U. Ulam Stability, Lyapunov-Type Inequality, and the Eigenvalue Problem for Model of Discrete Fractional-Order Deflection Equations of Vertical Columns and a Rotating String with Two-Point Boundary Conditions. Mathematics 2025, 13, 18. https://doi.org/10.3390/math13010018
ur Rehman, H.; Amir, F.; Alzabut, J.; Azim, M.A. An Inertial Subgradient Extragradient Method for Efficiently Solving Fixed-Point and Equilibrium Problems in Infinite Families of Demimetric Mappings. Mathematics 2025, 13, 20. https://doi.org/10.3390/math13010020
Hamid Baghani, Jehad Alzabut, Juan J. Nieto , Abdelkrim Salim, Existence and uniqueness of solution of a tripled system of sequential fractional Langevin differential equations with cyclic boundary conditions, Carpathian J. Math. Volume 41 (2025), No. 2, Pages 273-298
Alzabut, J., George Maria Selvam, A., Janagaraj, R.. "Oscillation analysis of a forced fractional order sum-difference equations." Journal of Mathematics and Computer Science, 37, no. 2 (2025): 214—225 https://dx.doi.org/10.22436/jmcs.037.02.06
Ibtesam, M., Nadeem, S., and Alzabut, J. Numerical computations of magnetohydrodynamic mixed convective flow of Casson nanofluid in an open-ended cavity formed by earthquake induced faults. Applied Mathematics and Mechanics (English Edition), 45(12), 2215–2230 (2024) https://doi.org/10.1007/s10483-024-3190-9
Meriem Mansouria Belhamiti, Zoubir Dahmani, Jehad Alzabut, D.K. Almutairi, Hasib Khan, Analyzing chaotic systems with multi-step methods: Theory and simulations, Alexandria Engineering Journal,V113,2025,516-534,https://doi.org/10.1016/j.aej.2024.10.125.
Dhineshbabu, R., Alzabut, J., Selvam, A.G.M. et al. Modeling and Qualitative Dynamics of the Effects of Internal and External Storage device in a Discrete Fractional Computer Virus. Qual. Theory Dyn. Syst. 23, 182 (2024). https://doi.org/10.1007/s12346-024-01041-9
Inayat Ullah, M. Arif, Sohail Nadeem, Jehad Alzabut, Numerical computations of MHD mixed convection flow of Bingham fluid in a porous square chamber with a wavy cylinder, International Journal of Thermofluids, Volume 24, 2024,https://doi.org/10.1016/j.ijft.2024.100938.
Samei, M., Karimi, L., K. A. Kaabar, M., Raeisi, R., Alzabut, J., Gonzalez, F. M. Efficiency of vaccines for COVID-19 and stability analysis with fractional derivative. Computational Methods for Differential Equations, 2024; 12(3): 454-470. doi: 10.22034/cmde.2023.56465.2359
Mohammad Esmael Samei. Ahmad Ahmadi. Mohammed K. A. Kaabar. Zailan Siri. Jehad Alzabut. Arzu Akbulut. Melike Kaplan. "SINGLE AND SYSTEM OF FRACTIONAL NEUTRAL FUNCTIONAL q-DIFFERENTIAL EQUATIONS WITH APPLICATION TO PARTICLES IN THE PLANE." J. Integral Equations Applications 36 (3) 317 - 340, Fall 2024. https://doi.org/10.1216/jie.2024.36.317
Abdulwasea Alkhazzan, Jungang Wang, Yufeng Nie, Hasib Khan, Jehad Alzabut; A novel SVIR epidemic model with jumps for understanding the dynamics of the spread of dual diseases. Chaos 1 September 2024; 34 (9): 093119. https://doi.org/10.1063/5.0175352
Sohail Nadeem, Atiq ur Rehman, Y. S. Hamed, Muhammed Bilal Riaz, Inayat Ullah, Jehad Alzabut; Finite element method for natural convection flow of Casson hybrid (Al2O3–Cu/water) nanofluid inside H-shaped enclosure. AIP Advances 1 August 2024; 14 (8): 085130. https://doi.org/10.1063/5.0218934
Salim A, Kucukaslan A, Alzabut J, Khuddush M. System of Nonlinear (<i>k</i>, ψ)-Hilfer Fractional Order Hybrid Boundary Value Problems. Contemp. Math. [Internet]. 2024 Aug. 23 [cited 2024 Aug. 24];5(3):3434-61. Available from: https://ojs.wiserpub.com/index.php/CM/article/view/4974
Nelson, S.P., Raja, R., Eswaran, P. et al. Modeling the dynamics of Covid-19 in Japan: employing data-driven deep learning approach. Int. J. Mach. Learn. & Cyber. (2024). https://doi.org/10.1007/s13042-024-02301-5
Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut. A new fixed point approach for solutions of a 𝑝-Laplacian fractional 𝑞-difference boundary value problem with an integral boundary condition[J]. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155
Usman MT, Abbas Hashmi M, Nadeem S, et al. Exact solutions of a hybrid nanofluid model for the flow across a heated stretching cylinder at a stagnation point. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems. 2024;0(0). doi:10.1177/23977914241265549
Sohail Nadeem,Bushra Ishtiaq,Salman Saleem and Jehad Alzabut, Exact exploration of time fractional-based magnetized flow of a generalized second grade fluid through an oscillating rectangular duct, International Journal of Geometric Methods in Modern Physics https://doi.org/10.1142/S0219887824400310
Sivashankar, M., Sabarinathan, S., Khan, H. et al. Stability and computational results for chemical kinetics reactions in enzyme. J Math Chem (2024). https://doi.org/10.1007/s10910-024-01660-2
Abdelatif Boutiara, Jehad Alzabut, Hasib Khan, Saim Ahmed, Ahmad Taher Azar. Qualitative analytical results of complex order nonlinear fractional differential equations with robust control scheme[J]. AIMS Mathematics, 2024, 9(8): 20692-20720. doi: 10.3934/math.20241006
Saim Ahmed, Ahmad Taher Azar, Mahmoud Abdel-Aty, Hasib Khan, Jehad Alzabut, A nonlinear system of hybrid fractional differential equations with application to fixed time sliding mode control for Leukemia therapy,Ain Shams Engineering Journal, Volume 15, Issue 4,2024, https://doi.org/10.1016/j.asej.2023.102566.
Sohail Nadeem, Bushra Ishtiaq, S. Saleem, Jehad Alzabut, A comparative study of prescribed thermal analysis of a non-Newtonian fluid between exponential and linear porous surfaces, Case Studies in Thermal Engineering, V 60, 2024, https://doi.org/10.1016/j.csite.2024.104622.
R. Ramaswami, T. V. Vasu, A. Vinodkumar, and J. Alzabut. Exponential stabilizationof hybrid event-triggered singular time-delay systems. Math. Meth. Appl. Sci. (2024), 1–17, DOI 10.1002/mma.10190.
Nithyakala, Gunasekaran, Ayyappan, Govindasamy, Alzabut, Jehad and Thandapani, Ethiraju. "Fourth-order nonlinear strongly non-canonical delay differential equations: new oscillation criteria via canonical transform" Mathematica Slovaca, vol. 74, no. 1, 2024, pp. 115-126. https://doi.org/10.1515/ms-2024-0008
Alzabut, J., Khuddush, M., Salim, A. et al. Fractional Order Nonlocal Thermistor Boundary Value Problem on Time Scales. Qual. Theory Dyn. Syst. 23, 167 (2024). https://doi.org/10.1007/s12346-024-01024-w
Srinidhi, A., Raja, R., Zhu, Q. et al. Enhanced active disturbance rejection control for vehicle active suspension system subjected to input time varying delay. J Anal (2024). https://doi.org/10.1007/s41478-024-00745-0
A.Salim, C. Derbazi, J. Alzabut, and A. Küçükaslan. Existence and κ-Mittag-Leffler-Ulam-Hyers Stability Results for Implicit Coupled (κ,ϑ)-Fractional Differential Systems. Arab Journal of Basic and Applied Sciences 31, no. 1 (2024): 225–41. doi:10.1080/25765299.2024.2334130.
A. Alkhazzan, J. Wang, Y. Nie, H. Khan, and J. Alzabut, A stochastic Susceptible Vaccinees Infected Recovered epidemic model with three types of noises, Math. Meth. Appl. Sci. (2024), 1–23, DOI 10.1002/mma.10042.
Hasib Khan, Jehad Alzabut, Abdulwasea Alkhazzan, Qualitative dynamical study of hybrid system of Pantograph equations with nonlinear p-Laplacian operator in Banach’s space, Results in Control and Optimization,Volume 15,2024, https://doi.org/10.1016/j.rico.2024.100416.
Gopal NS, Mohan Jonnalagadda J, Alzabut J. Data Dependence and Existence and Uniqueness for Hilfer Nabla Fractional Difference Equations. Contemp. Math. [Internet]. 2024 Mar. 8 [cited 2024 Mar. 13];5(1):780-96. Available from: https://ojs.wiserpub.com/index.php/CM/article/view/2552
Abdelhamid, H., Souid, M.S. & Alzabut, J. New solvability and stability results for variable-order fractional initial value problem. J Anal (2024). https://doi.org/10.1007/s41478-024-00725-4
Mutti-Ur Rehman. Jehad Alzabut. Fouzia Amir. Rami Ahmad El-Nabulsi. Waranont Anukool. "A LOW RANK ODE BASED TECHNIQUE FOR NUMERICAL APPROXIMATION OF LOWER BOUNDS OF STRUCTURED SINGULAR VALUE." Rocky Mountain J. Math. 54 (1) 245 - 259, February 2024. https://doi.org/10.1216/rmj.2024.54.245
Tousif Iqra, Sohail Nadeem, Hassan Ali Ghazwani, Faisal Z. Duraihem, Jehad Alzabut, Instability analysis for MHD boundary layer flow of nanofluid over a rotating disk with anisotropic and isotropic roughness, Heliyon, 2024, https://doi.org/10.1016/j.heliyon.2024.e26779.
Sohail Nadeem, Bushra Ishtiaq, Jehad Alzabut, Hassan Ali Ghazwani, Entropy generation for exact irreversibility analysis in the MHD channel flow of Williamson fluid with combined convective-radiative boundary conditions, HELIYON (2024), doi: https://doi.org/10.1016/j.heliyon.2024.e26432.
Abdulwasea Alkhazzan, Jungang Wang, Yufeng Nie, Hasib Khan, Jehad Alzabut, A novel SIRS epidemic model for two diseases incorporating treatment functions, media coverage, and three types of noise, Chaos, Solitons & Fractals, Volume 181,2024, https://doi.org/10.1016/j.chaos.2024.114631.
Khan, H., Ahmed, S., Alzabut, J. et al. Nonlinear variable order system of multi-point boundary conditions with adaptive finite-time fractional-order sliding mode control. Int. J. Dynam. Control (2024). https://doi.org/10.1007/s40435-023-01369-1
Matar, M.M., Samei, M.E., Etemad, S. et al. Stability Analysis and Existence Criteria with Numerical Illustrations to Fractional Jerk Differential System Involving Generalized Caputo Derivative. Qual. Theory Dyn. Syst. 23, 111 (2024). https://doi.org/10.1007/s12346-024-00970-9
Alzabut, J., Grace, S.R., Santra, S.S. et al. Oscillation Criteria for Even-Order Nonlinear Dynamic Equations with Sublinear and Superlinear Neutral Terms on Time Scales. Qual. Theory Dyn. Syst. 23, 103 (2024). https://doi.org/10.1007/s12346-024-00961-w
Haleh Tajadodi, Hasib Khan, Jehad Alzabut, J.F. Gómez-Aguilar, An optimization method for solving fractional oscillation equation, Results in Physics,V 57, 2024, https://doi.org/10.1016/j.rinp.2024.107403.
Hasib Khan, Jehad Alzabut, J.F. Gómez-Aguilar, Abdulwasea Alkhazan, Essential criteria for existence of solution of a modified-ABC fractional order smoking model, Ain Shams Engineering Journal, 2024, https://doi.org/10.1016/j.asej.2024.102646.
Abdullah Özbekler, Kübra Uslu İşler, Jehad Alzabut. Sturmian comparison theorem for hyperbolic equations on a rectangular prism[J]. AIMS Mathematics, 2024, 9(2): 4805-4815. doi: 10.3934/math.2024232
Sohail Nadeem, Rehan Akber, Hassan Ali Ghazwani, Jehad Alzabut, Ahmed M. Hassan, Numerical computations for convective MHD flow of viscous fluid inside the hexagonal cavity having sinusoidal heated walls, Results in Physics, Volume 56,2024,https://doi.org/10.1016/j.rinp.2023.107229.
Houas, M., Samei, M.E., Sundar Santra, S. et al. On a Duffing-type oscillator differential equation on the transition to chaos with fractional q-derivatives. J Inequal Appl 2024, 12 (2024). https://doi.org/10.1186/s13660-024-03093-6
S. Kundu, J. Alzabut, M. E. Samei, H. Khan, Habitat complexity of a discrete predator-prey model with Hassell-Varley type functional response, Community and Ecology Volume 1 Issue 1 (2023) doi: 10.59429/ce.v1i1.105
Khan, H., Rajpar, A.H., Alzabut, J. et al. On a Fractal–Fractional-Based Modeling for Influenza and Its Analytical Results. Qual. Theory Dyn. Syst. 23, 70 (2024). https://doi.org/10.1007/s12346-023-00918-5
Hassan Ali Ghazwani, Misbah Ijaz, Sohail Nadeem, Hammad Khan, J. Alzabut, Ahmed M. Hassan, Darcy-Forchheimer flow with viscoelastic Cattaneo-Christov heat flux model and nonlinear thermal radiation: A numerical investigation, Case Studies in Thermal Engineering, Volume 53,2024, https://doi.org/10.1016/j.csite.2023.103908.
Nadeem S, Ishtiaq B, Alzabut J, Hassan AM. Fractional Nadeem trigonometric non-Newtonian (NTNN) fluid model based on Caputo-Fabrizio fractional derivative with heated boundaries. Sci Rep. 2023 Dec 6;13(1):21511. doi: 10.1038/s41598-023-48122-4. PMID: 38057327; PMCID: PMC10700307.
B. Ishtiaq, S. Nadeem, J. Alzabut , Thermal analysis of magnetized Walter’s-B fluid with the application of Prabhakar fractional derivative over an exponentially moving inclined plate, Phys. Fluids 35, 123115 (2023); doi: 10.1063/5.0179491
Sohail Nadeem, Usman Nasrullah, Jehad Alzabut, Hassan Ali Ghazwani, Mohamed R. Ali, Finite element method for the heated Newtonian fluid inside a connected optical cavities, Case Studies in Thermal Engineering, Volume 53, 2024, https://doi.org/10.1016/j.csite.2023.103844.
1.Jagan Mohan Jonnalagadda and Jehad Alzabut, Numerical computation of exponential functions in frame of Nabla fractional calculus, Computational Methods for Differential Equations Vol. 11, No. 2, 2023, pp. 291-302 DOI:10.22034/cmde.2022.50918.2119
Sohail Nadeem, Rabia Salma, Naeem Ullah, Jehad Alzabut, Hassan Ali Ghazwani, Numerical solutions for MHD mixed convection flow in a square wavy cavity inside heated corrugated rods, International Communications in Heat and Mass Transfer, Volume 149, 2023, https://doi.org/10.1016/j.icheatmasstransfer.2023.107136.
Wafa F. Alfwzan, Hasib Khan, Jehad Alzabut, Stability analysis for a fractional coupled Hybrid pantograph system with p-Laplacian operator, Results in Control and Optimization, Volume 14,2024, https://doi.org/10.1016/j.rico.2023.100333.
S. Nadeem, R. Akber, H. A. Ghazwani & J. Alzabut (2023) FEM-based numerical solutions for mixed convection MHD flow of fluid inside the square cavity having sinusoidal walls , Numerical Heat Transfer, Part A: Applications, DOI: 10.1080/10407782.2023.2270151
Chang, YK., Alzabut, J. & Ponce, R. Bounded Solutions of Functional Integro-Differential Equations Arising from Heat Conduction in Materials with Memory. J Math Sci (2023). https://doi.org/10.1007/s10958-023-06738-x
Mohammed M. Matar, Souad Ayadi, Jehad Alzabut, & Abdelkrim Salim. (2023). Fixed point approach for nonlinear ψ-caputo fractional differential hybrid coupled system with periodic boundary conditions. Results in Nonlinear Analysis, 6(4), 13–29. Retrieved from https://www.nonlinear-analysis.com/index.php/pub/article/view/318
J. Alzabut, R. Dhineshbabu, A. George M. Selvam,F. Gómez-Aguilar, Hasib Khan: Existence, uniqueness and synchronization of a fractional tumor growth model in discrete time with numerical results, Results in Physics 54 (2023) 107030, https://doi.org/10.1016/j.rinp.2023.107030
Abbas I. M., Alzabut J., Subramanian M. (2023) Existence of solutions for hybrid Caputo-proportional fractional differential inclusions in Banach spaces, Journal of Mathematical Sciences, Vol. 274, No. 6. DOI 10.1007/s10958-023-06643-3
Zakri, W., Nadeem, S., Rashid, M., Alzabut, J., & Ghazwani, H. A. (2023, September 11). Mathematical modeling and analysis for electromagnetohydrodynamic viscous fluid flow with corrugated walls inside a curved channel. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik. https://doi.org/10.1002/zamm.202300172
Khan, H., Alzabut, J., Gómez-Aguilar, J. F., & Alfwzan, W. F. (2023). A nonlinear perturbed coupled system with an application to chaos attractor. Results in Physics, 106891. https://doi.org/10.1016/j.rinp.2023.106891
Nadeem, S., Bushra Ishtiaq, Jehad Alzabut, Ali, H., & Hassan, A. (2023). Unsteady magnetized flow of micropolar fluid with prescribed thermal conditions subject to different geometries. Results in Physics, 106946–106946. https://doi.org/10.1016/j.rinp.2023.106946
Nadeem, S., Ishtiaq, B., Alzabut, J., & Eldin, S. M. (2023). Implementation of differential transform method on the squeezing flow of trigonometric non-Newtonian fluid between two heated plates. International Journal of Modern Physics B. https://doi.org/10.1142/s0217979224503260
Abdulwasea Alkhazzan, Jungang Wang, Yufeng Nie, Hasib Khan, Jehad Alzabut, cAn effective transport-related SVIR stochastic epidemic model with media coverage and Levy noise, Chaos, Solitons & Fractals Volume 175, Part 1, October 2023, 113953. https://doi.org/10.1016/j.chaos.2023.113953
Rehman, M.-U.; Alzabut, J.; Fatima, N.; Rasulov, T.H. The Stability Analysis of Linear Systems with Cauchy–Polynomial-Vandermonde Matrices. Axioms 2023, 12, 831. https://doi.org/10.3390/axioms12090831
Khan, H., Jehad Alzabut, Gómez-Aguilar, J. F., & Agarwal, P. (2023). Piecewise mABC fractional derivative with an application. AIMS Mathematics, 8(10), 24345–24366. https://doi.org/10.3934/math.20231241
Khan H., Ahmed S, Alzabut J., Azar A. T. (2023). A generalized coupled system of fractional differential equations with application to finite time sliding mode control for Leukemia therapy. Chaos, Solitons & Fractals, Volume 174, 113901. https://doi.org/10.1016/j.chaos.2023.113901
Akhtar S., Hussain Z., Khan Z. A., Nadeem S., Alzabut J. (2023). Endoscopic balloon dilation of a stenosed artery stenting via cfd tool open-foam: Physiology of angioplasty and stent placement. Chinese Journal of Physics, Volume 85, October 2023, Pages 143-167
Vinodkumar A., Hariniea S., Feckan M., Alzabut J. (2023). Some stability results on non-linear singular differential systems with random impulsive moments. An International Journal of Optimization and Control: Theories & Applications. Vol.13, No.2, pp.259-268 http://doi.org/10.11121/ijocta.2023.1327
Houas M., Alzabut J., Khuddush M. (2023). Existence and stability analysis to the sequential coupled hybrid system of fractional differential equations with two different fractional derivatives. An International Journal of Optimization and Control: Theories & Applications Vol.13, No.2, pp.224-235. http://doi.org/10.11121/ijocta.2023.1278
Arundhathi, S., Alzabut, J., Muthulakshmi, V. and Adıgüzel, H. (2023). A certain class of fractional difference equations with damping: Oscillatory properties. Demonstratio Mathematica, vol. 56, no. 1, pp. 20220236. https://doi.org/10.1515/dema-2022-0236
Oğuz, A. D., Alzabut, J., Özbekler, A., & Jonnalagadda, J. M. (2023). Lyapunov and Hartman-type inequalities for higher-order discrete fractional boundary value problems. Miskolc Mathematical Notes, 24(2), 953. https://doi.org/10.18514/mmn.2023.3931
Aadhithiyan, S.; Raja, R.; Alzabut, J.; Rajchakit, G.; Agarwal, R.P. Passivity Analysis and Complete Synchronization of Fractional Order for Both Delayed and Non-Delayed Complex Dynamical Networks with Couplings in the Derivative. Axioms 2023, 12, 730. https://doi.org/10.3390/axioms12080730
Dida, R.; Boulares, H.; Moumen, A.; Alzabut, J.; Bouye, M.; Laskri, Y. On Stability of Second Order Pantograph Fractional Differential Equations in Weighted Banach Space. Fractal Fract. 2023, 7, 560. https://doi.org/10.3390/fractalfract7070560
S. Aadhithiyan, R. Raja, J. Dianavinnarasi, J. Alzabut, D. Baleanu, Robust synchronization of multi-weighted fractional order complex dynamical networks under nonlinear coupling via non-fragile control with leakage and constant delays,Chaos, Solitons & Fractals, Volume 174, 2023,113788, https://doi.org/10.1016/j.chaos.2023.113788.
Bushra Ishtiaq, Nadeem, S., & Jehad Alzabut. (2023). Effects of variable magnetic field and partial slips on the dynamics of Sutterby nanofluid due to biaxially exponential and nonlinear stretchable sheets. 9(7), e17921–e17921. https://doi.org/10.1016/j.heliyon.2023.e17921
Souad Ayadi, Jehad Alzabut, A. George Maria Selvam, D. Vignesh (2023). On stability results for a nonlinear generalized fractional hybrid pantograph equation involving deformable derivative. Int. J. Nonlinear Anal. Appl. In Press, 1–14. http://dx.doi.org/10.22075/ijnaa.2023.26647.3376
Khan, H., Alzabut, J., Alfwzan, W. F., & Gulzar, H. (2023). Nonlinear Dynamics of a Piecewise Modified ABC Fractional-Order Leukemia Model with Symmetric Numerical Simulations. Symmetry, 15(7), 1338. http://dx.doi.org/10.3390/sym15071338
Vidhyaa, K. S., Thandapani, E., Alzabut, J., & Ozbekler, A. (2023). Oscillation criteria for non-canonical second-order nonlinear delay difference equations with a superlinear neutral term. Electronic Journal of Differential Equations, 2023(01-??), 45. https://doi.org/10.58997/ejde.2023.45
Alkhazzan A., Nie, Y., Khan, H., Alzabut J. (2023) A stochastic SIRS modeling of transport-related infection with three types of noises, Alexandria Engineering Journal 76 (1), 557-572. https://doi.org/10.1016/j.aej.2023.06.049
Nadeem, S., Mushtaq, A., Alzabut, J. et al. (2023) The flow of an Eyring Powell Nanofluid in a porous peristaltic channel through a porous medium, Sci Rep 13, 9694. https://doi.org/10.1038/s41598-023-36136-x
Mirza, Salamat, N., Duraihem, F. Z., Akhtar, S., Nadeem, S., Jehad Alzabut, & Saleem, S. (2023). Exact Analytical Solutions of Stagnation point flow over a Heated stretching cylinder: A phase flow nanofluid model. Chinese Journal of Physics https://doi.org/10.1016/j.cjph.2023.03.017
Khan, H., Alzabut, J., Tunç, O., & Kaabar, M. K. A. (2023). A fractal–fractional COVID-19 model with a negative impact of quarantine on the diabetic patients. Results in Control and Optimization, 10, 100199. https://doi.org/10.1016/j.rico.2023.100199
Alzabut, J., Nadeem, S., Noor, S., & Eldin, S. M. (2023). Numerical analysis of Magnetohydrodynamic convection heat flow in an enclosure. Results in Physics, 106618. https://doi.org/10.1016/j.rinp.2023.106618
Murugesan, M., Muthaiah, S., Alzabut, J. et al. Existence and H-U stability of a tripled system of sequential fractional differential equations with multipoint boundary conditions. Bound Value Probl 2023, 56 (2023). https://doi.org/10.1186/s13661-023-01744-z
Sohail Nadeem, Bushra Ishtiaq, Jehad Alzabut, Sayed M. Eldin,Three parametric Prabhakar fractional derivative-based thermal analysis of Brinkman hybrid nanofluid flow over exponentially heated plate, Case Studies in Thermal Engineering, 2023, 103077, ISSN 2214-157X, https://doi.org/10.1016/j.csite.2023.103077.
Wang, X.; Alzabut, J.; Khuddush, M.; Fečkan, M. Solvability of Iterative Classes of Nonlinear Elliptic Equations on an Exterior Domain. Axioms 2023, 12, 474. https://doi.org/10.3390/axioms12050474
Khan, H.; Alzabut, J.; Gulzar, H.; Tunç, O.; Pinelas, S. On System of Variable Order Nonlinear p-Laplacian Fractional Differential Equations with Biological Application. Mathematics 2023, 11, 1913. https://doi.org/10.3390/math11081913
Natarajan Mala, Arumugam Vinodkumar, Jehad Alzabut, Passivity analysis for Markovian jumping neutral type neural networks with leakage and mode-dependent delay 2023, Volume 10, Issue 2: 184-204. doi: 10.3934/biophy.2023012
A. Stephen, R. Raja, Xiaoshan Bai, J. Alzabut, R. Swaminathan, G. Rajchakit, Asymptotic pinning synchronization of nonlinear multi-agent systems: Its application to tunnel diode circuit, Nonlinear Analysis: Hybrid Systems, Volume 49, 2023,https://doi.org/10.1016/j.nahs.2023.101366.
Alzabut J, Houas M, Abbas MI. Application of fractional quantum calculus on coupled hybrid differential systems within the sequential Caputo fractional q-derivatives. Demonstratio Mathematica 2023; 56: 20220205. https://doi.org/10.1515/dema-2022-0205
Joseph D, Ramachandran R, Alzabut J, Jose SA, Khan H. A Fractional-Order Density-Dependent Mathematical Model to Find the Better Strain of Wolbachia. Symmetry. 2023; 15(4):845. https://doi.org/10.3390/sym15040845
Telli B, Souid MS, Alzabut J, Khan H. Existence and Uniqueness Theorems for a Variable-Order Fractional Differential Equation with Delay. Axioms. 2023; 12(4):339. https://doi.org/10.3390/axioms12040339
Alzabut J, Grace SR, Jonnalagadda JM, Santra SS, Abdalla B. Higher-Order Nabla Difference Equations of Arbitrary Order with Forcing, Positive and Negative Terms: Non-Oscillatory Solutions. Axioms. 2023; 12(4):325. https://doi.org/10.3390/axioms12040325
Rehman M-U, Alzabut J, Fatima N, Khan S. A Mathematical Tool to Investigate the Stability Analysis of Structured Uncertain Dynamical Systems with M-Matrices. Mathematics. 2023; 11(7):1622. https://doi.org/10.3390/math11071622
Khan, H., Alzabut, J., Shah, A., He, Z., Etemad, S., Rezapour, S., & Zada, A. (2023). On fractal-fractional waterborne disease model: a study on theoretical and numerical aspects of solutions via simulations. Fractals. https://doi.org/10.1142/s0218348x23400558
Abdelatif Boutiara, Mohammed M. Matar, Jehad Alzabut, Mohammad Esmael Samei, Hasib Khan. On ABC coupled Langevin fractional differential equations constrained by Perov's fixed point in generalized Banach spaces[J]. AIMS Mathematics, 2023, 8(5): 12109-12132. doi: 10.3934/math.2023610
Boulares, H.; Moumen, A.; Fernane, K.; Alzabut, J.; Saber, H.; Alraqad, T.; Benaissa, M. On Solutions of Fractional Integrodifferential Systems Involving Ψ-Caputo Derivative and Ψ-Riemann–Liouville Fractional Integral. Mathematics 2023, 11, 1465. https://doi.org/10.3390/math11061465
Khan, H., Alzabut, J., Gulzar, H. (2023). Existence of solutions for hybrid modified {\it ABC}-fractional differential equations with $p$-Laplacian operator and application to a waterborne disease model, Alexandria Engineering Journal 70, 665–672. https://doi.org/10.1016/j.aej.2023.02.045
Jose, S. A., Ramachandran, R., Baleanu, D., Panigoro, H. S., Alzabut, J., & Balas, V. E. (2022). Computational dynamics of a fractional order substance addictions transfer model with Atangana‐Baleanu‐Caputo derivative. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.8818
Jonnalagadda, M. J., Alzabut, J. (2023) Numerical computation of exponential functions in frame of Nabla fractional calculus. Computational Methods for Differential Equations 11 (2), 291- 302. https://doi.org10.22034/cmde.2022.50918.2119
Nadeem, S., Ali, S., Alzabut, J., Hamida, M. B. B., & Eldin, S. M. (2023). Numerical investigation of the influence of hybrid nano-fluid on heat transfer in semi-annular channel. Case Studies in Thermal Engineering, 44, 102855. https://doi.org/10.1016/j.csite.2023.102855
Jonnalagadda, M. J., Feckan, M., Alzabut, J. (2023). Existence and stability of solutions for nonlinear impulsive nabla fractional boundary value problems of order less than one. The Interdisciplinary Journal of Discontinuity, Nonlinearity, and Complexity, 12(2), 231–244. https://doi.org/10.5890/dnc.2023.06.001
Alzabut, J., Selvam, A. G. M., Vignesh, D., Etemad, S., & Rezapour, S. (2023). Stability analysis of tempered fractional nonlinear Mathieu type equation model of an ion motion with octopole‐only imperfections. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.9073
Jose, S. A., Ramachandran, R., Baleanu, D., Panigoro, H. S., Alzabut, J., & Balas, V. E. (2022). Computational dynamics of a fractional order substance addictions transfer model with Atangana‐Baleanu‐Caputo derivative. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.8818
Sudsutad, W., Thaiprayoon, C., Khaminsou, B., Alzabut, J., & Kongson, J. (2023, February 6). A Gronwall inequality and its applications to the Cauchy-type problem under ψ-Hilfer proportional fractional operators. Journal of Inequalities and Applications, 2023(1). https://doi.org/10.1186/s13660-023-02929-x
Jose, S. A., Raja, R., Omede, B. I., Agarwal, R. P., Alzabut, J., Cao, J., & Balas, V. E. (2022). Mathematical modeling on co-infection: transmission dynamics of Zika virus and Dengue fever. Nonlinear Dynamics. https://doi.org/10.1007/s11071-022-08063-5
Sakthivel, N., Mounika Devi, M., & Alzabut, J. (2022). ℋ∞ observer-based consensus for nonlinear multiagent systems with actuator saturation and input delays. International Journal of Control, 1–15. https://doi.org/10.1080/00207179.2022.2150320
Jose, S. A., Ramachandran, R., Baleanu, D., Panigoro, H. S., Alzabut, J., & Balas, V. E. (2022). Computational dynamics of a fractional order substance addictions transfer model with Atangana‐Baleanu‐Caputo derivative. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.8818
Saker, S. H., Sethi, A. K., Tunc, O., & Alzabut, J. (2023). Riccati Technique for Oscillation of Second Order Nonlinear Neutral Delay Dynamic Equations. Journal of Mathematics and Computer Science, 29(4), 387-398. https://doi.org/10.22436/jmcs.029.04.07
Khan, H., Alzabut, J., Baleanu, D., Alobaidi, G., & Rehman, M. U. (2023). Existence of solutions and a numerical scheme for a generalized hybrid class of n-coupled modified ABC-fractional differential equations with an application. AIMS Mathematics, 8(3), 6609–6625. https://doi.org/DOI:10.3934/math.2023334
Alzabut, J., Khuddush, M., Selvam, A. M., & Vignesh, D. (2023). Second Order Iterative Dynamic Boundary Value Problems Involving Mixed Derivative Operators with Physical Applications. Qualitative Theory of Dynamical Systems, 22(32). https://doi.org/10.1007/s12346-022-00736-1
Alzabut, J., Grace, S. R., Jonnalagadda, J., & Thandapani, E. (2023). Bounded Non-oscillatory Solutions of Nabla Forced Fractional Difference Equations With Positive and Negative Terms. Qualitative Theory of Dynamical Systems, 22(28). https://doi.org/10.1007/s12346-022-00729-0
Dianavinnarasi, J., Raja, R., Alzabut, J., Cao, J., Niezabitowski, M., & Bagdasar, O. (2022). Application of Caputo–Fabrizio operator to suppress the Aedes Aegypti mosquitoes via Wolbachia: An LMI approach. Mathematics and Computers in Simulation, 201, 462–485. https://doi.org/10.1016/j.matcom.2021.02.002
Iswarya, M., Raja, R., Cao, J., Niezabitowski, M., Alzabut, J., & Maharajan, C. (2022). New results on exponential input-to-state stability analysis of memristor based complex-valued inertial neural networks with proportional and distributed delays. Mathematics and Computers in Simulation, 201, 440–461. https://doi.org/10.1016/j.matcom.2021.01.020
Alzabut, J., Grace, S. R., Santra, S. S., & Chhatria, G. N. (2023). Asymptotic and Oscillatory Behaviour of Third Order Non-linear Differential Equations with Canonical Operator and Mixed Neutral Terms. Qualitative Theory of Dynamical Systems, 22(15). https://doi.org/10.1007/s12346-022-00715-6
Palanisamy, A., Muthulakshmi, V., Alzabut, J., Santra, S. S., & Nonlaopon, K. (2023). Oscillation results for a fractional partial differential system with damping and forcing terms. AIMS Mathematics, 8(2), 4261-4279. https://doi: 10.3934/math.2023212
Alzabut, J., Grace, S. R., & Chhatria, G. N. (2022). New oscillation results for higher order nonlinear differential equations with a nonlinear neutral terms. Journal of Mathematics and Computer Science, 28(03), 294–305. https://doi.org/10.22436/jmcs.028.03.07
Shah, A., Khan, H., De la Sen, M., Alzabut, J., Etemad, S., Deressa, C. T., & Rezapour, S. (2022). On Non-Symmetric Fractal-Fractional Modeling for Ice Smoking: Mathematical Analysis of Solutions. Symmetry, 15(1), 87. https://doi.org/10.3390/sym15010087
Boutiara, A., Alzabut, J., Selvam, A. G. M., & Vignesh, D. (2022). Analysis and Applications of Sequential Hybrid $$\psi $$-Hilfer Fractional Differential Equations and Inclusions in Banach Algebra. Qualitative Theory of Dynamical Systems, 22(1). https://doi.org/10.1007/s12346-022-00710-x
Moumen, A., Boulares, H., Alzabut, J., Khelifi, F., & Imsatfia, M. (2022). New Results for Homoclinic Fractional Hamiltonian Systems of Order α∈(1/2,1]. Fractal and Fractional, 7(1), 39. https://doi.org/10.3390/fractalfract7010039
Boutiara, A., Alzabut, J., Ghaderi, M., & Rezapour, S. (2023). On a coupled system of fractional $ (p, q) $-differential equations with Lipschitzian matrix in generalized metric space. AIMS Mathematics, 8(1), 1566–1591. https://doi.org/10.3934/math.2023079
Salim, A., Alzabut, J., Sudsutad, W., & Thaiprayoon, C. (2022). On Impulsive Implicit ψ-Caputo Hybrid Fractional Differential Equations with Retardation and Anticipation. Mathematics, 10(24), 4821. https://doi.org/10.3390/math10244821
Belhadji, B., Alzabut, J., Samei, M. E., & Fatima, N. (2022). On the Global Behaviour of Solutions for a Delayed Viscoelastic-Type Petrovesky Wave Equation with p-Laplacian Operator and Logarithmic Source. Mathematics, 10(22), 4194. https://doi.org/10.3390/math10224194
Baghani, H., Feckan, M., Farokhi-Ostad, J., & Alzabut, J. (2022). New existence and uniqueness result for fractional Bagley-Torvik differential equation. Miskolc Mathematical Notes, 23(2), 537. https://doi.org/10.18514/mmn.2022.3702
Kaewsuwan, M., Phuwapathanapun, R., Sudsutad, W., Alzabut, J., Thaiprayoon, C., & Kongson, J. (2022). Nonlocal Impulsive Fractional Integral Boundary Value Problem for (ρk,ϕk)-Hilfer Fractional Integro-Differential Equations. Mathematics, 10(20), 3874. https://doi.org/10.3390/math10203874
Dhivakaran, P. B., Vinodkumar, A., Vijay, S., Lakshmanan, S., Alzabut, J., El-Nabulsi, R. A., & Anukool, W. (2022). Bipartite Synchronization of Fractional-Order Memristor-Based Coupled Delayed Neural Networks with Pinning Control. Mathematics, 10(19), 3699. https://doi.org/10.3390/math10193699
Amdouni, M., Alzabut, J., Samei, M. E., Sudsutad, W., & Thaiprayoon, C. (2022). A Generalized Approach of the Gilpin–Ayala Model with Fractional Derivatives under Numerical Simulation. Mathematics, 10(19), 3655. https://doi.org/10.3390/math10193655
Matar, M.M., Alzabut, J., Abbas, M.I., Awadallah, M.M.,& Mahmudov, N. I. (2022). On Qualitative Analysis for Time-Dependent Semi-Linear Fractional Differential Systems. Progress in Fractional Differentiation and Applications, 8(4), 525–544. https://doi.org/10.18576/pfda/080406
Shammakh, W., Selvam, A. G. M., Dhakshinamoorthy, V., & Alzabut, J. (2022). Stability of Boundary Value Discrete Fractional Hybrid Equation of Second Type with Application to Heat Transfer with Fins. Symmetry, 14(9), 1877. https://doi.org/10.3390/sym14091877
Subramanian, M., Manigandan, M., Tunç, C., Gopal, T. N., & Alzabut, J. (2022). On system of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order. Journal of Taibah University for Science, 16(1), 1–23. https://doi.org/10.1080/16583655.2021.2010984
Thomas, R., Jose, S. A., Raja, R., Alzabut, J., Cao, J., & Balas, V. E. (2022). Modeling and analysis of SEIRS epidemic models using homotopy perturbation method: A special outlook to 2019-nCoV in India. International Journal of Biomathematics, 15(08). https://doi.org/10.1142/s1793524522500590
Alzabut, J., Agarwal, R. P., Grace, S. R., & Jonnalagadda, J. M. (2022). Oscillation Results for Solutions of Fractional-Order Differential Equations. Fractal and Fractional, 6(9), 466. https://doi.org/10.3390/fractalfract6090466
Alzabut, J., Grace, S. R., Selvam, A. G. M., & Janagaraj, R. (2022). Nonoscillatory solutions of discrete fractional order equations with positive and negative terms. Mathematica Bohemica, 1–19. https://doi.org/10.21136/mb.2022.0157-21
Alzabut, J., Alobaidi, G., Hussain, S., Madi, E. N., & Khan, H. (2022). Stochastic dynamics of influenza infection: Qualitative analysis and numerical results. Mathematical Biosciences and Engineering, 19(10), 10316–10331. https://doi.org/10.3934/mbe.2022482
Kongson, J., Thaiprayoon, C., Neamvonk, A., Alzabut, J., & Sudsutad, W. (2022). Investigation of fractal-fractional HIV infection by evaluating the drug therapy effect in the Atangana-Baleanu sense. Mathematical Biosciences and Engineering, 19(11), 10762–10808. https://doi.org/10.3934/mbe.2022504
Pratap, A., Raja, R., Cao, J., Huang, C., Alzabut, J., & Bagdasar, O. (2022). $${\cal O}({t^{ - \beta }})$$-Synchronization and Asymptotic Synchronization of Delayed Fractional Order Neural Networks. Acta Mathematica Scientia, 42(4), 1273–1292. https://doi.org/10.1007/s10473-022-0402-7
Jose, S. A., Raja, R., Alzabut, J., Rajchakit, G., Cao, J., & Balas, V. E. (2022). Mathematical modeling on transmission and optimal control strategies of corruption dynamics. Nonlinear Dynamics, 109(4), 3169–3187. https://doi.org/10.1007/s11071-022-07581-6
Eswari, R., Alzabut, J., Samei, M. E., Tunç, C., & Jonnalagadda, J. M. (2022). New results on the existence of periodic solutions for Rayleigh equations with state-dependent delay. Nonautonomous Dynamical Systems, 9(1), 103–115. https://doi.org/10.1515/msds-2022-0149
Etemad, S., Iqbal, I., Samei, M. E., Rezapour, S., Alzabut, J., Sudsutad, W., & Goksel, I. (2022). Some inequalities on multi-functions for applying in the fractional Caputo–Hadamard jerk inclusion system. Journal of Inequalities and Applications, 2022(1). https://doi.org/10.1186/s13660-022-02819-8
Rehman, M.-U., Alzabut, J., Ateeq, T., Kongson, J., & Sudsutad, W. (2022). The Dual Characterization of Structured and Skewed Structured Singular Values. Mathematics, 10(12), 2050. https://doi.org/10.3390/math10122050
Berhail, A., Tabouche, N., Alzabut, J., & Samei, M. E. (2022). Using the Hilfer–Katugampola fractional derivative in initial-value Mathieu fractional differential equations with application to a particle in the plane. Advances in Continuous and Discrete Models, 2022(1). https://doi.org/10.1186/s13662-022-03716-6
Yao, Z., Alzabut, J., Obaidat, S. (2022). On periodic solutions of Mackey--Glass hematopoiesis model via concave and increasing operator. Italian Journal of Pure and Applied Mathematics 47(2022), 1048—1058.
Jose, S. A., Raja, R., Zhu, Q., Alzabut, J., Niezabitowski, M., & Balas, V. E. (2022). An Integrated Eco-Epidemiological Plant Pest Natural Enemy Differential Equation Model with Various Impulsive Strategies. Mathematical Problems in Engineering, 2022, 1–23. https://doi.org/10.1155/2022/4780680
Khan, H., Alzabut, J., Shah, A., Etemad, S., Rezapour, S., & Park, C. (2022). A study on the fractal-fractional tobacco smoking model. AIMS Mathematics, 7(8), 13887–13909. https://doi.org/10.3934/math.2022767
Subramanian, M., Alzabut, J., Abbas, M. I., Thaiprayoon, C., & Sudsutad, W. (2022). Existence of Solutions for Coupled Higher-Order Fractional Integro-Differential Equations with Nonlocal Integral and Multi-Point Boundary Conditions Depending on Lower-Order Fractional Derivatives and Integrals. Mathematics, 10(11), 1823. https://doi.org/10.3390/math10111823
Saranya, K., Piramanantham, V., Thandapani, E., & Alzabut, J. (2022). via Oscillation of Noncanonical Second-Order Functional Differential Equations Canonical Transformation. Qualitative Theory of Dynamical Systems, 21(3). https://doi.org/10.1007/s12346-022-00602-0
Rezapour, S., Etemad, S., Sinan, M., Alzabut, J., & Vinodkumar, A. (2022). A Mathematical Analysis on the New Fractal-Fractional Model of Second-Hand Smokers via the Power Law Type Kernel: Numerical Solutions, Equilibrium Points, and Sensitivity Analysis. Journal of Function Spaces, 2022, 1–26. https://doi.org/10.1155/2022/3553021
Alzabut, J., Selvam, A. G. M., Dhineshbabu, R., Tyagi, S., Ghaderi, M., & Rezapour, S. (2022). A Caputo discrete fractional-order thermostat model with one and two sensors fractional boundary conditions depending on positive parameters by using the Lipschitz-type inequality. Journal of Inequalities and Applications, 2022(1). https://doi.org/10.1186/s13660-022-02786-0
Pleumpreedaporn, S., Pleumpreedaporn, C., Kongson, J., Thaiprayoon, C., Alzabut, J., & Sudsutad, W. (2022). Dynamical Analysis of Nutrient-Phytoplankton-Zooplankton Model with Viral Disease in Phytoplankton Species under Atangana-Baleanu-Caputo Derivative. Mathematics, 10(9), 1578. https://doi.org/10.3390/math10091578
Alzabut, J., Selvam, A. G. M., Dhakshinamoorthy, V., Mohammadi, H., & Rezapour, S. (2022). On Chaos of Discrete Time Fractional Order Host-Immune-Tumor Cells Interaction Model. Journal of Applied Mathematics and Computing, 68(6), 4795–4820. https://doi.org/10.1007/s12190-022-01715-0
Sudsutad, W., Jarasthitikulchai, N., Thaiprayoon, C., Kongson, J., & Alzabut, J. (2022). Novel Generalized Proportional Fractional Integral Inequalities on Probabilistic Random Variables and Their Applications. Mathematics, 10(4), 573. https://doi.org/10.3390/math10040573
Khan, T., Ahmad, S., Zaman, G., Alzabut, J., & Ullah, R. (2022). On fractional order multiple integral transforms technique to handle three dimensional heat equation. Boundary Value Problems, 2022(1). https://doi.org/10.1186/s13661-022-01597-y
Shammakh, W., Selvam, A. G. M., Dhakshinamoorthy, V., & Alzabut, J. (2022). A Study of Generalized Hybrid Discrete Pantograph Equation via Hilfer Fractional Operator. Fractal and Fractional, 6(3), 152. https://doi.org/10.3390/fractalfract6030152
Rezaei, S., Rezapour, S., Alzabut, J., de Sousa, R., Alotaibi, B., & El-Tantawy, S. (2022). Some novel approaches to analyze a nonlinear Schrodinger’s equation with group velocity dispersion: Plasma bright solitons. Results in Physics, 35, 105316. https://doi.org/10.1016/j.rinp.2022.105316
Alzabut, J., Agarwal, R. P., Grace, S. R., Jonnalagadda, J. M., Selvam, A. G. M., & Wang, C. (2022). A Survey on the Oscillation of Solutions for Fractional Difference Equations. Mathematics, 10(6), 894. https://doi.org/10.3390/math10060894
Zhou, D., Babaei, A., Banihashemi, S., Jafari, H., Alzabut, J., & Moshokoa, S. P. (2022). A Chebyshev Collocation Approach to Solve Fractional Fisher–Kolmogorov–Petrovskii–Piskunov Equation with Nonlocal Condition. Fractal and Fractional, 6(3), 160. https://doi.org/10.3390/fractalfract6030160
Jose, S. A., Ramachandran, R., Cao, J., Alzabut, J., Niezabitowski, M., & Balas, V. E. (2022). Stability analysis and comparative study on different eco‐epidemiological models: Stage structure for prey and predator concerning impulsive control.
Pratap, A., Raja, R., Agarwal, R. P., Alzabut, J., Niezabitowski, M., & Hincal, E. (2022). Further results on asymptotic and finite-time stability analysis of fractional-order time-delayed genetic regulatory networks. Neurocomputing, 475, 26–37. https://doi.org/10.1016/j.neucom.2021.11.088
Anbalagan, P., Ramachandran, R., Alzabut, J., Hincal, E., & Niezabitowski, M. (2022). Improved Results on Finite-Time Passivity and Synchronization Problem for Fractional-Order Memristor-Based Competitive Neural Networks: Interval Matrix Approach. Fractal and Fractional, 6(1), 36. https://doi.org/10.3390/fractalfract6010036
Amir, F., Farajzadeh, A., & Alzabut, J. (2022). An improved proximal method with quasi-distance for nonconvex multiobjective optimization problem. Journal of Applied Analysis, 28(2), 333–340. https://doi.org/10.1515/jaa-2021-2074
Kumar, A., Alzabut, J., Kumari, S., Rani, M., & Chugh, R. (2022). Dynamical properties of a novel one dimensional chaotic map. Mathematical Biosciences and Engineering, 19(3), 2489–2505. https://doi.org/10.3934/mbe.2022115
Aadhithiyan, S., Raja, R., Alzabut, J., Zhu, Q., & Niezabitowski, M. (2021). Robust non‐fragile Mittag‐Leffler synchronization of fractional order non‐linear complex dynamical networks with constant and infinite distributed delays. Mathematical Methods in the Applied Sciences, 45(4), 2166–2189. https://doi.org/10.1002/mma.7915
Arockia Samy, S., Cao, Y., Ramachandran, R., Alzabut, J., Niezabitowski, M., & Lim, C. P. (2021). Globally asymptotic stability and synchronization analysis of uncertain multi‐agent systems with multiple time‐varying delays and impulses. International Journal of Robust and Nonlinear Control, 32(2), 737–773. https://doi.org/10.1002/rnc.5851
Thaiprayoon, C., Kongson, J., Sudsutad, W., Alzabut, J., Etemad, S., & Rezapour, S. (2022). Analysis of a nonlinear fractional system for Zika virus dynamics with sexual transmission route under generalized Caputo-type derivative. Journal of Applied Mathematics and Computing, 68(6), 4273–4303. https://doi.org/10.1007/s12190-021-01663-1
Khaminsou, B., Sudsutad, W., Thaiprayoon, C., Alzabut, J., & Pleumpreedaporn, S. (2021). Analysis of Impulsive Boundary Value Pantograph Problems via Caputo Proportional Fractional Derivative under Mittag–Leffler Functions. Fractal and Fractional, 5(4), 251. https://doi.org/10.3390/fractalfract5040251
Hajiseyedazizi, S. N., Samei, M. E., Alzabut, J., & Chu, Y. M. (2021). On multi-step methods for singular fractional q-integro-differential equations. Open Mathematics, 19(1), 1378–1405. https://doi.org/10.1515/math-2021-0093
Seemab, A., Rehman, U. M., Feckan, M., Alzabut, J., & Abbas, S. (2021). On the existence and Ulam-Hyers stability of a new class of partial (Φ,χ)-fractional differential equations with impulses. Filomat, 35(6), 1977–1991. https://doi.org/10.2298/fil2106977s
Joseph, D., Ramachandran, R., Alzabut, J., Cao, J., Niezabitowski, M., & Lim, C. P. (2021). Global exponential stability results for the host‐parasitoid model of sugarcane borer in stochastic environment with impulsive effects via non‐fragile control: An LMI approach. Optimal Control Applications and Methods, 43(2), 512–531. https://doi.org/10.1002/oca.2837
Afshari, H., Marasi, H. R., & Alzabut, J. (2021). Applications of new contraction mappings on existence and uniqueness results for implicit ϕ-Hilfer fractional pantograph differential equations. Journal of Inequalities and Applications, 2021(1). https://doi.org/10.1186/s13660-021-02711-x
Nosrati Sahlan, M., Afshari, H., Alzabut, J., & Alobaidi, G. (2021). Using Fractional Bernoulli Wavelets for Solving Fractional Diffusion Wave Equations with Initial and Boundary Conditions. Fractal and Fractional, 5(4), 212. https://doi.org/10.3390/fractalfract5040212
Samei, M. E., Ahmadi, A., Selvam, A. G. M., Alzabut, J., & Rezapour, S. (2021). Well-posed conditions on a class of fractional q-differential equations by using the Schauder fixed point theorem. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03631-2
Boutiara, A., Benbachir, M., Alzabut, J., & Samei, M. E. (2021). Monotone Iterative and Upper–Lower Solution Techniques for Solving the Nonlinear ψ−Caputo Fractional Boundary Value Problem. Fractal and Fractional, 5(4), 194. https://doi.org/10.3390/fractalfract5040194
Jose, S. A., Raja, R., Zhu, Q., Alzabut, J., Niezabitowski, M., & Balas, V. E. (2021). Impact of strong determination and awareness on substance addictions: A mathematical modeling approach. Mathematical Methods in the Applied Sciences, 45(8), 4140–4160. https://doi.org/10.1002/mma.7859
Rezapour, S., Thabet, S. T. M., Matar, M. M., Alzabut, J., & Etemad, S. (2021). Some Existence and Stability Criteria to a Generalized FBVP Having Fractional Composite p -Laplacian Operator. Journal of Function Spaces, 2021, 1–10. https://doi.org/10.1155/2021/9554076
Etemad, S., Tellab, B., Deressa, C. T., Alzabut, J., Li, Y., & Rezapour, S. (2021). On a generalized fractional boundary value problem based on the thermostat model and its numerical solutions via Bernstein polynomials. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03610-7
Etemad, S., Hussain, A., Imran, A., Alzabut, J., Rezapour, S., & Selvam, A. G. M. (2021). On a fractional cantilever beam model in the q-difference inclusion settings via special multi-valued operators. Journal of Inequalities and Applications, 2021(1). https://doi.org/10.1186/s13660-021-02708-6
Kotsamran, K., Sudsutad, W., Thaiprayoon, C., Kongson, J., & Alzabut, J. (2021). Analysis of a Nonlinear ψ-Hilfer Fractional Integro-Differential Equation Describing Cantilever Beam Model with Nonlinear Boundary Conditions. Fractal and Fractional, 5(4), 177. https://doi.org/10.3390/fractalfract5040177
Kaabar, M. K. A., Grace, S. R., Alzabut, J., Özbekler, A., & Siri, Z. (2021). On the Oscillation of Even-Order Nonlinear Differential Equations with Mixed Neutral Terms. Journal of Function Spaces, 2021, 1–6. https://doi.org/10.1155/2021/4403821
Stephen, A., Raja, R., Alzabut, J., Zhu, Q., Niezabitowski, M., & Bagdasar, O. (2021). Mixed Time-Delayed Nonlinear Multi-agent Dynamic Systems for Asymptotic Stability and Non-fragile Synchronization Criteria. Neural Processing Letters, 54(1), 43–74. https://doi.org/10.1007/s11063-021-10619-2
Kaabar, M. K. A., Shabibi, M., Alzabut, J., Etemad, S., Sudsutad, W., Martínez, F., & Rezapour, S. (2021). Investigation of the Fractional Strongly Singular Thermostat Model via Fixed Point Techniques. Mathematics, 9(18), 2298. https://doi.org/10.3390/math9182298
Etemad, S., Tellab, B., Alzabut, J., Rezapour, S., & Abbas, M. I. (2021). Approximate solutions and Hyers–Ulam stability for a system of the coupled fractional thermostat control model via the generalized differential transform. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03563-x
Saker, S. H., Alzabut, J., O’Regan, D., & Agarwal, R. P. (2021). Self-improving properties of weighted Gehring classes with applications to partial differential equations. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03552-0.
Alzabut, J., George Maria Selvam, A., Vignesh, D., & Gholami, Y. (2021). Solvability and stability of nonlinear hybrid ∆-difference equations of fractional-order. International Journal of Nonlinear Sciences and Numerical Simulation, 0(0). https://doi.org/10.1515/ijnsns-2021-0005
Khan, T., Ullah, R., Zaman, G., & Alzabut, J. (2021). A mathematical model for the dynamics of SARS-CoV-2 virus using the Caputo-Fabrizio operator. Mathematical Biosciences and Engineering, 18(5), 6095–6116. https://doi.org/10.3934/mbe.2021305
Selvam, G. M., Alzabut, J., Dhakshinamoorthy, V., Jonnalagadda, J. M., & Abodayeh, K. (2021). Existence and stability of nonlinear discrete fractional initial value problems with application to vibrating eardrum. Mathematical Biosciences and Engineering, 18(4), 3907–3921. https://doi.org/10.3934/mbe.2021195
Boutiara, A., Etemad, S., Alzabut, J., Hussain, A., Subramanian, M., & Rezapour, S. (2021). On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03525-3
Kongson, J., Sudsutad, W., Thaiprayoon, C., Alzabut, J., & Tearnbucha, C. (2021). On analysis of a nonlinear fractional system for social media addiction involving Atangana–Baleanu–Caputo derivative. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03515-5
Jain, S. K., Tyagi, S., Dhiman, N., & Alzabut, J. (2021). Study of dynamic behaviour of psychological stress during COVID-19 in India: A mathematical approach. Results in Physics, 29, 104661. https://doi.org/10.1016/j.rinp.2021.104661
Baitiche, Z., Derbazi, C., Alzabut, J., Samei, M. E., Kaabar, M. K. A., & Siri, Z. (2021). Monotone Iterative Method for ψ-Caputo Fractional Differential Equation with Nonlinear Boundary Conditions. Fractal and Fractional, 5(3), 81. https://doi.org/10.3390/fractalfract5030081
Senthilraj, S., Saravanakumar, T., Raja, R., & Alzabut, J. (2021). Delay-dependent passivity analysis of nondeterministic genetic regulatory networks with leakage and distributed delays against impulsive perturbations. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03504-8
Eswari, R., Alzabut, J., Samei, M. E., & Zhou, H. (2021). On periodic solutions of a discrete Nicholson’s dual system with density-dependent mortality and harvesting terms. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03521-7
Iswarya, M., Raja, R., Zhu, Q., Niezabitowski, M., Alzabut, J., & Maharajan, C. (2021). Existence, Uniqueness, and Exponential Stability of Uncertain Delayed Neural Networks with Inertial Term: Nonreduced Order Case. Mathematical Problems in Engineering, 2021, 1–15. https://doi.org/10.1155/2021/5560763
Mohammadi, H., Kaabar, M. K. A., Alzabut, J., Selvam, A. G. M., & Rezapour, S. (2021b). A Complete Model of Crimean-Congo Hemorrhagic Fever (CCHF) Transmission Cycle with Nonlocal Fractional Derivative. Journal of Function Spaces, 2021, 1–12. https://doi.org/10.1155/2021/1273405
Thaiprayoon, C., Sudsutad, W., Alzabut, J., Etemad, S., & Rezapour, S. (2021). On the qualitative analysis of the fractional boundary value problem describing thermostat control model via ψ-Hilfer fractional operator. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03359-z
Saker, S. H., Selvarangam, S., Geetha, S., Thandapani, E., & Alzabut, J. (2021). Asymptotic behavior of third order delay difference equations with a negative middle term. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03407-8
Subramanian, M., Alzabut, J., Baleanu, D., Samei, M. E., & Zada, A. (2021). Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03414-9
Saker, S. H., Alzabut, J., Sayed, A. G., & O’Regan, D. (2021). Some new Opial type dynamic inequalities via convex functions and applications. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03461-2
Aleem, M., Ur Rehman, M., Alzabut, J., Etemad, S., & Rezapour, S. (2021). On solutions of nonlinear BVPs with general boundary conditions by using a generalized Riesz–Caputo operator. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03459-w
Aadhithiyan, S., Raja, R., Zhu, Q., Alzabut, J., Niezabitowski, M., & Lim, C. (2021). Modified projective synchronization of distributive fractional order complex dynamic networks with model uncertainty via adaptive control. Chaos, Solitons & Fractals, 147, 110853. https://doi.org/10.1016/j.chaos.2021.110853
Saker, S. H., Alzabut, J., Saied, A. I., & O’Regan, D. (2021). New characterizations of weights on dynamic inequalities involving a Hardy operator. Journal of Inequalities and Applications, 2021(1). https://doi.org/10.1186/s13660-021-02606-x
Stephen, A., Raja, R., Alzabut, J., Zhu, Q., Niezabitowski, M., & Lim, C. P. (2021). A Lyapunov–Krasovskii Functional Approach to Stability and Linear Feedback Synchronization Control for Nonlinear Multi-Agent Systems with Mixed Time Delays. Mathematical Problems in Engineering, 2021, 1–20. https://doi.org/10.1155/2021/6616857
Amdouni, M., Chérif, F., & Alzabut, J. (2021). Pseudo almost periodic solutions and global exponential stability of a new class of nonlinear generalized Gilpin–Ayala competitive model with feedback control with delays. Computational and Applied Mathematics, 40(3). https://doi.org/10.1007/s40314-021-01464-z
Alzabut, J., Selvam, A. G. M., Dhineshbabu, R., & Kaabar, M. K. A. (2021). The Existence, Uniqueness, and Stability Analysis of the Discrete Fractional Three-Point Boundary Value Problem for the Elastic Beam Equation. Symmetry, 13(5), 789. https://doi.org/10.3390/sym13050789
Grace, S. R., Alzabut, J., & Abodayeh, K. (2021). Oscillation theorems for higher order dynamic equations with superlinear neutral term. AIMS Mathematics, 6(6), 5493–5501. https://doi.org/10.3934/math.2021325
Tabouche, N., Berhail, A., Matar, M. M., Alzabut, J., Selvam, A. G. M., & Vignesh, D. (2021). Existence and Stability Analysis of Solution for Mathieu Fractional Differential Equations with Applications on Some Physical Phenomena. Iranian Journal of Science and Technology, Transactions A: Science, 45(3), 973–982. https://doi.org/10.1007/s40995-021-01076-6
Alzabut, J., Selvam, A. G. M., El-Nabulsi, R. A., Dhakshinamoorthy, V., & Samei, M. E. (2021). Asymptotic Stability of Nonlinear Discrete Fractional Pantograph Equations with Non-Local Initial Conditions. Symmetry, 13(3), 473. https://doi.org/10.3390/sym13030473
Vinodkumar, A., Senthilkumar, T., Hariharan, S., & Alzabut, J. (2021). Exponential stabilization of fixed and random time impulsive delay differential system with applications. Mathematical Biosciences and Engineering, 18(3), 2384–2400.
Dianavinnarasi, J., Raja, R., Alzabut, J., Niezabitowski, M., Selvam, G., & Bagdasar, O. (2021). An LMI Approach-Based Mathematical Model to Control Aedes aegypti Mosquitoes Population via Biological Control. Mathematical Problems in Engineering, 2021, 1–18. https://doi.org/10.1155/2021/5565949
Selvam, A. G. M., Alzabut, J., Vianny, D. A., Jacintha, M., & Yousef, F. B. (2021). Modeling and stability analysis of the spread of novel coronavirus disease COVID-19. International Journal of Biomathematics, 14(05), 2150035. https://doi.org/10.1142/s1793524521500352
Dianavinnarasi, J., Raja, R., Alzabut, J., Niezabitowski, M., & Bagdasar, O. (2021). Controlling Wolbachia Transmission and Invasion Dynamics among Aedes Aegypti Population via Impulsive Control Strategy. Symmetry, 13(3), 434. https://doi.org/10.3390/sym13030434
Alzabut, J., Adjabi, Y., Sudsutad, W., & Rehman, M. U. (2021). New generalizations for Gronwall type inequalities involving a $ \psi $-fractional operator and their applications. AIMS Mathematics, 6(5), 5053–5077. https://doi.org/10.3934/math.2021299
Alzabut, J., Ahmad, B., Etemad, S., Rezapour, S., & Zada, A. (2021). Novel existence techniques on the generalized φ-Caputo fractional inclusion boundary problem. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03301-3
Jabeen, S., Zheng, Z., Rehman, M. U., Wei, W., & Alzabut, J. (2021). Some Fixed Point Results of Weak-Fuzzy Graphical Contraction Mappings with Application to Integral Equations. Mathematics, 9(5), 541. https://doi.org/10.3390/math9050541
Aadhithiyan, S., Raja, R., Zhu, Q., Alzabut, J., Niezabitowski, M., & Lim, C. P. (2021). Exponential Synchronization of Nonlinear Multi-weighted Complex Dynamic Networks with Hybrid Time Varying Delays. Neural Processing Letters, 53(2), 1035–1063. https://doi.org/10.1007/s11063-021-10428-7
Althobati, S., Alzabut, J., & Bazighifan, O. (2021). Non-Linear Neutral Differential Equations with Damping: Oscillation of Solutions. Symmetry, 13(2), 285. https://doi.org/10.3390/sym13020285
Grace, S. R., Alzabut, J., & Özbekler, A. (2021). New Criteria on Oscillatory and Asymptotic Behavior of Third-Order Nonlinear Dynamic Equations with Nonlinear Neutral Terms. Entropy, 23(2), 227. https://doi.org/10.3390/e23020227
Matar, M. M., Abbas, M. I., Alzabut, J., Kaabar, M. K. A., Etemad, S., & Rezapour, S. (2021). Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-021-03228-9
Rehman, M. U., Iqbal, S., Alzabut, J., & El-Nabulsi, R. A. (2021). Stability Analysis of an LTI System with Diagonal Norm Bounded Linear Differential Inclusions. Symmetry, 13(1), 152. https://doi.org/10.3390/sym13010152
Saker, S. H., Rabie, S. S., Alzabut, J., O’Regan, D., & Agarwal, R. P. (2021). Some basic properties and fundamental relations for discrete Muckenhoupt and Gehring classes. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-020-03105-x
Adjabi, Y., Samei, M. E., Matar, M. M., & Alzabut, J. (2021). Langevin differential equation in frame of ordinary and Hadamard fractional derivatives under three point boundary conditions. AIMS Mathematics, 6(3), 2796–2843. https://doi.org/10.3934/math.2021171
Alzabut, J., Bohner, M., & Grace, S. R. (2021). Oscillation of nonlinear third-order difference equations with mixed neutral terms. Advances in Difference Equations, 2021(1). https://doi.org/10.1186/s13662-020-03156-0
Bazighifan, O., Grace, S. R., Alzabut, J., & Özbekler, A. (2020). New results for oscillatory properties of neutral differential equations with a p-Laplacian like operator. Miskolc Mathematical Notes, 21(2), 631. https://doi.org/10.18514/mmn.2020.3322
Khaminsou, B., Thaiprayoon, C., Alzabut, J., & Sudsutad, W. (2020). Nonlocal boundary value problems for integro-differential Langevin equation via the generalized Caputo proportional fractional derivative. Boundary Value Problems, 2020(1). https://doi.org/10.1186/s13661-020-01473-7
Rehman, M. U., Alzabut, J., & Abodayeh, K. (2020). Computing Nearest Correlation Matrix via Low-Rank ODE’s Based Technique. Symmetry, 12(11), 1824. https://doi.org/10.3390/sym12111824
Afshari, H., Abdo, M. S., & Alzabut, J. (2020). Further results on existence of positive solutions of generalized fractional boundary value problems. Advances in Difference Equations, 2020(1). https://doi.org/10.1186/s13662-020-03065-2
Rehman, M. U., Alzabut, J., & Hyder, A. (2020). Quadratic Stability of Non-Linear Systems Modeled with Norm Bounded Linear Differential Inclusions. Symmetry, 12(9), 1432. https://doi.org/10.3390/sym12091432
Rehman, M. U., Alzabut, J., & Anwar, M. F. (2020). Stability Analysis of Linear Feedback Systems in Control. Symmetry, 12(9), 1518. https://doi.org/10.3390/sym12091518
Rehman, M. U., Alzabut, J., & Hussain Brohi, J. (2021). Computing $\mu$-values for LTI Systems. AIMS Mathematics, 6(1), 304–313. https://doi.org/10.3934/math.2021019
Grace, S. R., Alzabut, J., Punitha, S., Muthulakshmi, V., & Adıgüzel, H. (2020). On the nonoscillatory behavior of solutions of three classes of fractional difference equations. Opuscula Mathematica, 40(5), 549–568. https://doi.org/10.7494/opmath.2020.40.5.549
Matar, M. M., Amra, I. A., & Alzabut, J. (2020). Existence of solutions for tripled system of fractional differential equations involving cyclic permutation boundary conditions. Boundary Value Problems, 2020(1). https://doi.org/10.1186/s13661-020-01437-x
Selvam, A. G. M., Baleanu, D., Alzabut, J., Vignesh, D., & Abbas, S. (2020). On Hyers–Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulum. Advances in Difference Equations, 2020(1). https://doi.org/10.1186/s13662-020-02920-6
ur Rehman, M., Baleanu, D., Alzabut, J., Ismail, M., & Saeed, U. (2020). Green–Haar wavelets method for generalized fractional differential equations. Advances in Difference Equations, 2020(1). https://doi.org/10.1186/s13662-020-02974-6
Grace, S. R., Adıgüzel, H., Alzabut, J., & Jonnalagadda, J. M. (2020). Asymptotic Behavior of Positive Solutions for Three Types of Fractional Difference Equations with Forcing Term. Vietnam Journal of Mathematics, 49(4), 1151–1164. https://doi.org/10.1007/s10013-020-00449-5
Zada, A., Pervaiz, B., Alzabut, J., & Shah, S. O. (2020). Further results on Ulam stability for a system of first-order nonsingular delay differential equations. Demonstratio Mathematica, 53(1), 225–235. https://doi.org/10.1515/dema-2020-0018
Selvam, A. G. M., Alzabut, J., Dhineshbabu, R., Rashid, S., & Rehman, M. (2020). Discrete fractional order two-point boundary value problem with some relevant physical applications. Journal of Inequalities and Applications, 2020(1). https://doi.org/10.1186/s13660-020-02485-8
Baghani, H., Alzabut, J., & Nieto, J. J. (2020). Further Results on the Existence of Solutions for Generalized Fractional Basset–Boussinesq–Oseen Equation. Iranian Journal of Science and Technology, Transactions A: Science, 44(5), 1461–1467. https://doi.org/10.1007/s40995-020-00942-z
Baghani, H., Alzabut, J., Farokhi-Ostad, J., & Nieto, J. J. (2020). Existence and uniqueness of solutions for a coupled system of sequential fractional differential equations with initial conditions. Journal of Pseudo-Differential Operators and Applications, 11(4), 1731–1741. https://doi.org/10.1007/s11868-020-00359-7
Baghani, H., Alzabut, J., & Nieto, J. J. (2020a). A coupled system of Langevin differential equations of fractional order and associated to antiperiodic boundary conditions. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.6639
Matar, M. M., Alzabut, J., & Jonnalagadda, J. M. (2020). A coupled system of nonlinear Caputo–Hadamard Langevin equations associated with nonperiodic boundary conditions. Mathematical Methods in the Applied Sciences, 44(3), 2650–2670. https://doi.org/10.1002/mma.6711
Butt, R., Alzabut, J., Jonnalagadda, J., & Rehman, M. (2020). On Fractional Difference Langevin Equations Involving Non-Local Boundary Conditions. Dynamic Systems and Applications, 29(2). https://doi.org/10.46719/dsa20202928
Selvam, A., Alzabut, J., Janagaraj, R., & Adiguzel, H. (2020). Oscillation Analysis for Nonlinear Discrete Fractional Order Delay and Neutral Equations with Forcing Term. Dynamic Systems and Applications, 29(2). https://doi.org/10.46719/dsa20202929
Younus, A., Asif, M., Alzabut, J., Ghaffar, A., & Nisar, K. S. (2020). A new approach to interval-valued inequalities. Advances in Difference Equations, 2020(1). https://doi.org/10.1186/s13662-020-02781-z
Alzabut, J., Viji, J., Muthulakshmi, V., & Sudsutad, W. (2020). Oscillatory Behavior of a Type of Generalized Proportional Fractional Differential Equations with Forcing and Damping Terms. Mathematics, 8(6), 1037. https://doi.org/10.3390/math8061037
Sudsutad, W., Alzabut, J., Nontasawatsri, S., Thaiprayoon, C. (2020) Stability analysis for a generalized proportional fractional Langevin equation with variable coefficient and mixed integro-differential boundary conditions. Journal of Nonlinear Functional Analysis, 2020(1). https://doi.org/10.23952/jnfa.2020.23
Alzabut, J., Mohammadaliee, B., & Samei, M. E. (2020). Solutions of two fractional q-integro-differential equations under sum and integral boundary value conditions on a time scale. Advances in Difference Equations, 2020(1). https://doi.org/10.1186/s13662-020-02766-y
Bozkurt, F., Yousef, A., Baleanu, D., & Alzabut, J. (2020). A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host. Chaos, Solitons & Fractals, 138, 109931. https://doi.org/10.1016/j.chaos.2020.109931
Ur Rehman, M., Alzabut, J., Ahmed, S. (2020). An analytical approach to compute lower bounds of 𝝁-values. International Journal of Advanced and Applied Sciences, 7(8), 125–129. https://doi.org/10.21833/ijaas.2020.08.013
Zada, A., Alam, L., Kumam, P., Kumam, W., Ali, G., & Alzabut, J. (2020b). Controllability of Impulsive Non–Linear Delay Dynamic Systems on Time Scale. IEEE Access, 8, 93830–93839. https://doi.org/10.1109/access.2020.2995328
Berhail, A., Tabouche, N., Matar, M. M., & Alzabut, J. (2020). Boundary value problem defined by system of generalized Sturm–Liouville and Langevin Hadamard fractional differential equations. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.6507
Matar, M. M., Lubbad, A. A., & Alzabut, J. (2020). On p –Laplacian boundary value problems involving Caputo–Katugampula fractional derivatives. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.6534
Baleanu, D., Alzabut, J., Jonnalagadda, J. M., Adjabi, Y., & Matar, M. M. (2020). A coupled system of generalized Sturm–Liouville problems and Langevin fractional differential equations in the framework of nonlocal and nonsingular derivatives. Advances in Difference Equations, 2020(1). https://doi.org/10.1186/s13662-020-02690-1
Selvam, A. G. M., Alzabut, J., Jacintha, M., & Özbekler, A. (2020). Oscillation Results for a Class of Nonlinear Fractional Order Difference Equations with Damping Term. Journal of Function Spaces, 2020, 1–10. https://doi.org/10.1155/2020/5495873
Pratap, A., Raja, R., Alzabut, J., Cao, J., Rajchakit, G., & Huang, C. (2020). Mittag‐Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field. Mathematical Methods in the Applied Sciences, 43(10), 6223–6253. https://doi.org/10.1002/mma.6367
Pratap, A., Raja, R., Cao, J., Alzabut, J., & Huang, C. (2020). Finite-time synchronization criterion of graph theory perspective fractional-order coupled discontinuous neural networks. Advances in Difference Equations, 2020(1). https://doi.org/10.1186/s13662-020-02551-x
Rehman, M. U., & Alzabut, J. (2020). On Instability Analysis of Linear Feedback Systems. Computation, 8(1), 16. https://doi.org/10.3390/computation8010016
Alzabut, J., Manikandan, S., Muthulakshmi, V., Harikrishnan, S. (2020). Oscillation criteria for a class of nonlinear conformable fractional damped dynamic equations on time scales. Journal of Nonlinear Functional Analysis, 2020(1). https://doi.org/10.23952/jnfa.2020.10
Rehman, M. U., Alzabut, J., Brohi, J. H., & Hyder, A. (2020). On Spectral Properties of Doubly Stochastic Matrices. Symmetry, 12(3), 369. https://doi.org/10.3390/sym12030369
Grace, S. R., & Alzabut, J. (2020). Oscillation results for nonlinear second order difference equations with mixed neutral terms. Advances in Difference Equations, 2020(1). https://doi.org/10.1186/s13662-019-2472-y
Zada, A., Alzabut, J., Waheed, H., & Popa, I. L. (2020). Ulam–Hyers stability of impulsive integrodifferential equations with Riemann–Liouville boundary conditions. Advances in Difference Equations, 2020(1). https://doi.org/10.1186/s13662-020-2534-1
Pratap, A., Raja, R., Alzabut, J., Dianavinnarasi, J., Cao, J., & Rajchakit, G. (2019). Finite-Time Mittag-Leffler Stability of Fractional-Order Quaternion-Valued Memristive Neural Networks with Impulses. Neural Processing Letters, 51(2), 1485–1526. https://doi.org/10.1007/s11063-019-10154-1
Zhou, H., Alzabut, J., Rezapour, S., & Samei, M. E. (2020). Uniform persistence and almost periodic solutions of a nonautonomous patch occupancy model. Advances in Difference Equations, 2020(1). https://doi.org/10.1186/s13662-020-02603-2
Sudsutad, W., Alzabut, J., Tearnbucha, C., & Thaiprayoon, C. (2020). On the oscillation of differential equations in frame of generalized proportional fractional derivatives. AIMS Mathematics, 5(2), 856–871. https://doi.org/10.3934/math.2020058