How does a one-way mirror work? Though most everyone knows that one-way mirrors exist, having students model how they work turns out to be a very effective way to develop their thinking about how visible light travels and how we see images. Initial student models in this 6th grade light and matter science unit reveal a wide variety of ideas and explanations that motivate the unit investigations that help students figure out what is going on and lead them to a deeper understanding of the world around them.
A video of an experience with a one-way mirror, gets students to organize and write down their initial ideas and then they dig in to test those ideas and figure out what is really happening. Students build a scaled box model of what they saw in the video to test out their ideas. Using two boxes combined together with a one-way mirror in between the two, students vary the presence of light in the two boxes to figure out how a one-way mirror works and improve their initial models so they accurately explain how light is reflected and transmitted through materials and the basics of how these behaviors of light result in the images we see.
As the first 6th grade science unit in the OpenSciEd program, during the course of this unit, students also develop the foundation for classroom norms for collaboration that will be important across the whole program while answering several questions.
This unit on ecosystem dynamics and biodiversity begins with students reading headlines that claim that the future of orangutans is in peril and that the purchasing of chocolate may be the cause. Students then examine the ingredients in popular chocolate candies and learn that one of these ingredients--palm oil--is grown on farms near the rainforest where orangutans live. This prompts students to develop initial models to explain how buying candy could impact orangutans.
Students spend the first lesson set better understanding the complexity of the problem, which cannot be solved with simple solutions. They will figure out that palm oil is derived from the oil palm trees that grow near the equator, and that these trees are both land-efficient and provide stable income for farmers, factors that make finding a solution to the palm oil problem more challenging. Students will establish the need for a better design for oil palm farms, which will support both orangutans and farmers. The final set of lessons engage students in investigations of alternative approaches to growing food compared to large-scale monocrop farms. Students work to design an oil palm farm that simultaneously supports orangutan populations and the income of farmers and community members.
Mountains move! And there are ocean fossils on top of Mt. Everest! In this plate tectonics and rock cycling unit, students come to see that the Earth is much more active and alive than they have thought before. The unit launches with documentation of a 2015 Himalayan earthquake that shifted Mt. Everest suddenly to the southwest direction. Students also discover that Mt. Everest is steadily moving to the northeast every year and getting taller as well. Students wonder what could cause an entire mountain to move during an earthquake.
Students investigate other locations that are known to have earthquakes and they notice landforms, such as mountains and ridges that correspond to earthquake patterns. They read texts, explore earthquake and landform patterns using a data visualization tool, and study GPS data at these locations. Students develop an Earth model and study mantle convection motion to explain how Earth’s surface could move from processes below the surface. From this, students develop models to explain different ways plates collide and spread apart, ultimately explaining how Mt. Everest could move all the time in one direction, and also suddenly, in a backward motion, during an earthquake. The unit ends with students using what they have figured out about uplift and erosion to explain how a fossil was found at Mt. Everest without having to dig for it.
This unit on Earth’s resources and human impact begins with students observing news stories and headlines of drought and flood events across the United States. Students figure out that these drought and flood events are not normal and that both kinds of events seem to be related to rising temperatures. This prompts them to develop an initial model to explain how rising temperatures could cause both droughts and floods and leads students to wonder what could cause rising temperatures, too. This initial work sets students up to ask questions related to the query: How do changes in Earth’s system impact our communities and what can we do about it?
Students spend the first lesson set gathering evidence for how a change in temperature affects evaporation, precipitation, and other parts of Earth’s water system. They use evidence to support a scientific explanation that two climate variables (temperature and precipitation) are changing precipitation patterns in the case sites they investigated. Students figure out that the rising temperatures are caused by an imbalance in Earth’s carbon system, resulting in a variety of problems in different communities. The unit ends with students evaluating different kinds of solutions to these problems and how they are implemented in communities. Students work through a systematic evaluation process to consider (1) each solution’s potential to solve the carbon imbalance, (2) tradeoffs associated with solutions based on student-identified constraints, and (3) whether the solution in question makes sense for their community’s stakeholders.