* Undergraduate Coauthor
20. Complexes of Ni(II) with triphosphine-phosphite ligand P(OCH2PPh2)3: syntheses, structures, and electronic properties Aldona Beganskiene, Kevin E. Johnson, Nathan A. Phan*, Timothy J. Dobson*, Edward J. Valente, Eugenijus Urnezius Zeitschrift für anorganische und allgemeine Chemie 649, (2023) https://doi.org/10.1002/zaac.202300098
19. Bimetallic nickel complexes supported by 2,5-bis(phosphine)-1,4-hydroquinonate ligands. Structural, electrochemical and theoretical investigations; Pignotti, L. R., Luck, R. L., Deligonul, N., Protasiewicz, J. D., Johnson, K. E., Nguyen, L. P., and Urnezius, E. Inorganica Chimica Acta 424, 275 (2015). https://doi.org/10.1016/j.ica.2014.08.049
18. Computational Modeling of Lauric Acid at the Organic–Water Interface; Lars K. Holte*, Bryan A. Kuran*, Geraldine L. Richmond, and Kevin E. Johnson. J. Phys. Chem. C, 118 (19), 10024 (2014). https://doi.org/10.1021/jp411985c
17. Dancing on Water: The Choreography of Sulfur Dioxide Adsorption to Aqueous Surfaces; Eric S. Shamay, Kevin E. Johnson, and Geraldine L. Richmond, J. Phys. Chem. C, 115 (51), 25304 (2011). https://doi.org/10.1021/jp2064326
16. Infrared reflectance-absorbance spectroscopy of thin films formed by forced dewetting of solid-fluid interfaces; S.T. Heier, K.E. Johnson, A. Mudalige, D.J. Tiani, V.R. Reid*, J.E. Pemberton, Anal. Chem. 80, 8012 (2008). https://doi.org/10.1021/ac801019r
15. Contributor to Teaching with CAChe: Molecular Modeling in Chemistry. Crispen Wong* and James Currie, editors. Published by Fujitsu Limited (2001), Revised and expanded (2005).
14. Introducing Materials Science Concepts in Elementary Physics/Chemistry Courses with Scanning Tunneling Microscopes; P.H. Lippel and K.E. Johnson, The Journal of Materials Education 21, 131 (1999).
13. The roll of stress in the heteroepitaxy of Au on W(110); M.L. Hildner, K.E. Johnson, R.J. Wilson, Surf. Sci. 388, 110 (1997). https://doi.org/10.1016/S0039-6028(97)00382-8
12. Scanning tunneling microscopy in introductory teaching laboratories; P.H. Lippel and K.E. Johnson, Journal of Materials Education 19, 65 (1997).
11. Nucleation with a critical cluster size of zero: Submonolayer Fe inclusions in Cu(100); D.D. Chambliss and K.E. Johnson, Phys. Rev. B., 50 (7), 5012 (1994). https://doi.org/10.1103/PhysRevB.50.5012
10. Using STM to understand diffraction oscillations for Fe growth on Cu(100); D.D. Chambliss and K.E. Johnson, Surf. Sci., 313, 215 (1994). https://doi.org/10.1016/0039-6028(94)90042-6
9. A structural model and mechanism for Fe epitaxy on Cu(100); K.E. Johnson, D.D. Chambliss, R.J. Wilson, S. Chiang, Surf. Sci. Lett., 313, L811 (1994). https://doi.org/10.1016/0039-6028(94)90041-8
8. Scanning tunneling microscopy of biological molecules on Pt(111): From one hundred to five million Daltons; R.J. Wilson, K.E. Johnson, D.D. Chambliss, and B. Melior, Langmuir 9, 3478 (1993). https://doi.org/10.1021/la00036a024
7. Evidence for martensitic fcc-bcc transition of thin Fe films on Cu(100); K. Kalki, D.D. Chambliss, K.E. Johnson, R.J. Wilson, S. Chiang, Phys. Rev. B. 48, 18344 (1993). https://doi.org/10.1103/physrevb.48.18344
6. Initial growth and morphology of ultrathin magnetic films studied using scanning tunneling microscopy; D.D. Chambliss, K.E. Johnson, K. Kalki, S. Chiang, and R.J. Wilson, Mat. Res. Soc. Symp. Proc., 313, 713 (1993). https://doi.org/10.1557/PROC-313-713
5. Effects of adsorption site and surface stress on ordered structures of oxygen adsorbed on W(110); K.E. Johnson, R.J. Wilson, and S. Chiang, Phys. Rev. Lett., 71, 1055 (1993). https://doi.org/10.1103/PhysRevLett.71.1055
4. Growth and morphology of partial and multilayer Fe thin films on Cu(100) and the effect of adsorbed gases studied by scanning tunneling microscopy; K.E. Johnson, D.D. Chambliss, R.J. Wilson, S. Chiang, J. Vac. Sci. Technol. A, 11, 1654 (1993). https://doi.org/10.1116/1.578474
3. Surface structure and metal epitaxy: STM studies of ultrathin metal films on Au(111) and Cu(100); D.D. Chambliss, K.E. Johnson, R.J. Wilson, S. Chiang, J. Magnetic Materials, 121, 1 (1993). https://doi.org/10.1016/0304-8853(93)91137-V
2. The mesoscopic and microscopic consequences of decomposition and desorption of ultrathin oxide films from Si(100) studied by scanning tunneling microscopy; K.E. Johnson, P.K. Wu, M. Sander, and T. Engel, Surf. Sci., 290, 213 (1993). https://doi.org/10.1016/0039-6028(93)90705-O
1. Direct measurement of reaction kinetics for the decomposition of ultrathin oxide on Si(001) using scanning tunneling microscopy; K.E. Johnson and T. Engel, Phys. Rev. Lett., 69, 339 (1992). https://doi.org/10.1103/PhysRevLett.69.339