Oberlin undergraduate co-authors indicated by *
The history of astronomy has shown that advances in sensing methods open up new windows to the Universe and often lead to unexpected discoveries. Quantum sensor networks in combination with traditional astronomical observations are emerging as a novel modality for multimessenger astronomy. Here we develop a generic analysis framework that uses a data-driven approach to model the sensitivity of a quantum sensor network to astrophysical signals as a consequence of beyond-the-standard model (BSM) physics. The analysis method evaluates correlations between sensors to search for BSM signals coincident with astrophysical triggers, such as black hole mergers, supernovae, or fast radio bursts. Complementary to astroparticle approaches that search for particlelike signals (e.g., weakly interacting massive particles), quantum sensors are sensitive to wavelike signals from exotic quantum fields. This analysis method can be applied to networks of different types of quantum sensors, such as atomic clocks, matter-wave interferometers, and nuclear clocks, which can probe many types of interactions between BSM fields and standard model particles. We use this analysis method to carry out the first direct search utilizing a terrestrial network of precision quantum sensors for BSM fields emitted during a black hole merger. Specifically, we use the global network of optical magnetometers for exotic physics (GNOME) to perform a search for exotic low-mass field (ELF) bursts generated in coincidence with a gravitational-wave signal from a binary black hole merger (GW200311_115853) detected by LIGO/Virgo on the March 11, 2020. The associated gravitational wave heralds the arrival of the ELF burst that interacts with the spins of fermions in the magnetometers. This enables GNOME to serve as a tool for multimessenger astronomy. Our search found no significant events and, consequently, we place the first lab-based limits on combinations of ELF production and coupling parameters
Earth can act as a transducer to convert ultralight bosonic dark matter (axions and hidden photons) into an oscillating magnetic field with a characteristic pattern across its surface. Here we describe the first results of a dedicated experiment, the Search for Noninteracting Particles Experimental Hunt, that aims to detect such dark-matter-induced magnetic-field patterns by performing correlated measurements with a network of magnetometers in relatively quiet magnetic environments (in the wilderness far from human-generated magnetic noise). Our experiment constrains parameter space describing hidden-photon and axion dark matter with Compton frequencies in the 0.5–5.0 Hz range. Limits on the kinetic-mixing parameter for hidden-photon dark matter represent the best experimental bounds to date in this frequency range.
Numerous observations suggest that there exist undiscovered beyond-the-standard-model particles and fields. Because of their unknown nature, these exotic particles and fields could interact with standard model particles in many different ways and assume a variety of possible configurations. Here, an overview of the global network of optical magnetometers for exotic physics searches (GNOME), the ongoing experimental program designed to test a wide range of exotic physics scenarios, is presented. The GNOME experiment utilizes a worldwide network of shielded atomic magnetometers (and, more recently, comagnetometers) to search for spatially and temporally correlated signals due to torques on atomic spins from exotic fields of astrophysical origin. The temporal characteristics of a variety of possible signals currently under investigation such as those from topological defect dark matter (axion-like particle domain walls), axion-like particle stars, solitons of complex-valued scalar fields (Q-balls), stochastic fluctuations of bosonic dark matter fields, a solar axion-like particle halo, and bursts of ultralight bosonic fields produced by cataclysmic astrophysical events such as binary black hole mergers are surveyed.
Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals propagating through the network consistent with domain walls. The analysis of these data from a continuous month-long operation of GNOME finds no statistically significant signals, thus placing experimental constraints on such dark matter scenarios.
The Global Network of Optical Magnetometers for Exotic physics searches (GNOME) is a network of time-synchronized, geographically separated, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. GNOME is sensitive to exotic couplings of atomic spins to certain classes of dark matter candidates, such as axions. This work presents a data analysis procedure to search for axion dark matter in the form of topological defects: specifically, walls separating domains of discrete degenerate vacua in the axion field. An axion domain wall crossing the Earth creates a distinctive signal pattern in the network that can be distinguished from random noise. The reliability of the analysis procedure and the sensitivity of the GNOME to domain-wall crossings are studied using simulated data.
We present a detailed description of experimental studies of the parity violation effect in an isotopic chain of atomic ytterbium (Yb), whose results were reported in a recent paper [Antypas et al., Nat. Phys. 15, 120 (2019)]. We discuss the principle of these measurements, made on the Yb 6s2 1S0 → 5d6s 3D1 optical transition at 408 nm, describe the experimental apparatus, and give a detailed account of our studies of systematic effects in the experiment. Our results offer a direct observation of the isotopic variation in the atomic parity violation effect, a variation which is in agreement with the prediction of the standard model. These measurements are used to constrain electron-proton and electron-neutron interactions, mediated by a light Z' boson.
The weak force is the only fundamental interaction known to violate the symmetry with respect to spatial inversion (parity). This parity violation can be used to isolate the effects of the weak interaction in atomic systems, providing a unique, low-energy test of the standard model (see, for example, reviews 1,2,3). These experiments are primarily sensitive to the weak force between the valence electrons and the nucleus, mediated by the neutral Z0 boson and dependent on the weak charge of the nucleus, Qw. The standard model parameter Qw was most precisely determined in caesium 4,5 and has provided a stringent test of the standard model at low energy. The standard model also predicts a variation of Qw with the number of neutrons in the nucleus, an effect whose direct observation we are reporting here. Our studies, made on a chain of ytterbium isotopes, provide a measurement of isotopic variation in atomic parity violation, confirm the predicted standard model Qw scaling and offer information about an additional Z′ boson.
The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) is a network of geographically separated, time-synchronized, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. The GNOME is sensitive to nuclear and electron-spin couplings to exotic fields from astrophysical sources such as compact dark-matter objects (for example, axion stars and domain walls). Properties of the GNOME sensors such as sensitivity, bandwidth, and noise characteristics are studied in the present work, and features of the network’s operation (e.g., data acquisition, format, storage, and diagnostics) are described. Characterization of the GNOME is a key prerequisite to searches for and identification of exotic physics signatures.
We present an experimental determination of the 4S1/2 → 6S1/2 transition frequency in atomic potassium 39K, using direct frequency-comb spectroscopy. The output of a stabilized optical frequency comb was used to excite a thermal atomic vapor. The repetition rate of the frequency comb was scanned and the transitions were excited using stepwise two-photon excitation. The center-of-gravity frequency for the transition was found to be 𝜈cog = 822 951 698.09(13) MHz and the measured hyperfine A coefficient of the 6S1/2 state was 21.93(11) MHz. The measurements are in agreement with previous values and represent an improvement by a factor of 700 in the uncertainty of the center-of-gravity measurement.
We present an experimental and theoretical investigation of two-photon direct frequency-comb spectroscopy performed through velocity-selective excitation. In particular, we explore the effect of repetition rate on the 5S1/2 → 5D3/2,5/2 two-photon transitions excited in a rubidium atomic vapor cell. The transitions occur via stepwise excitation through the 5P1/2,3/2 states by use of the direct output of an optical frequency comb. Experiments were performed with two different frequency combs, one with a repetition rate of ≈ 925 MHz and one with a repetition rate of ≈ 250 MHz. The experimental spectra are compared to each other and to a theoretical model.
We report measurements of absolute transition frequencies and hyperfine coupling constants for the 8S1/2, 9S1/2, 7D3/2, and 7D5/2 states in 133Cs vapor. The stepwise excitation through either the 6P1/2 or 6P3/2 intermediate state is performed directly with broadband laser light from a stabilized femtosecond laser optical-frequency comb. The laser beam is split, counterpropagated, and focused into a room-temperature Cs vapor cell. The repetition rate of the frequency comb is scanned and we detect the fluorescence on the 7P3/2,1/2, → 6S1/2 branches of the decay of the excited states. The excitations to the different states are isolated by the introduction of narrow-bandwidth interference filters in the laser beam paths. Using a nonlinear least-squares method we find measurements of transition frequencies and hyperfine coupling constants that are in agreement with other recent measurements for the 8S state and provide improvement by 2 orders of magnitude over previously published results for the 9S and 7D states.
We present a detailed description of the observation of parity violation in the 1S0 - 3D1 408-nm forbidden transition of ytterbium, a brief report of which appeared earlier. Linearly polarized 408-nm light interacts with Yb atoms in crossed E and B fields. The probability of the 408-nm transition contains a parity-violating term, proportional to (𝝴 · B)[(𝝴 × E) · B], arising from interference between the parity-violating amplitude and the Stark amplitude due to the E field (𝝴 is the electric field of the light). The transition probability is detected by measuring the population of the 3P0 state, to which 65% of the atoms excited to the 3D1 state spontaneously decay. The population of the 3P0 state is determined by resonantly exciting the atoms with 649-nm light to the 6s7s 3S1 state and collecting the fluorescence resulting from its decay. Systematic corrections due to E-field and B-field imperfections are determined in auxiliary experiments. The statistical uncertainty is dominated by parasitic frequency excursions of the 408-nm excitation light due to the imperfect stabilization of the optical reference with respect to the atomic resonance. The present uncertainties are 9% statistical and 8% systematic. Methods of improving the accuracy for future experiments are discussed.
Atomic parity violation has been observed in the 6s2 1S0 → 5d6s 3D1 408-nm forbidden transition of ytterbium. The parity-violating amplitude is found to be 2 orders of magnitude larger than in cesium, where the most precise experiments to date have been performed. This is in accordance with theoretical predictions and constitutes the largest atomic parity-violating amplitude yet observed. This also opens the way to future measurements of neutron distributions and anapole moments by comparing parity-violating amplitudes for various isotopes and hyperfine components of the transition.
We report an uncertainty evaluation of an optical lattice clock based on the 1S0 → 3P0 transition in the bosonic isotope 174Yb by use of magnetically induced spectroscopy. The absolute frequency of the 1S0 → 3P0 transition has been determined through comparisons with optical and microwave standards at NIST. The weighted mean of the evaluations is 𝜈(174Yb)=518 294 025 309 217.8(0.9)Hz. The uncertainty due to systematic effects has been reduced to less than 0.8Hz, which represents 1.5×10-15 in fractional frequency.
Time has always had a special status in physics because of its fundamental role in specifying the regularities of nature and because of the extraordinary precision with which it can be measured. This precision enables tests of fundamental physics and cosmology, as well as practical applications such as satellite navigation. Recently, a regime of operation for atomic clocks based on optical transitions has become possible, promising even higher performance. We report the frequency ratio of two optical atomic clocks with a fractional uncertainty of 5.2 × 10-17. The ratio of aluminum and mercury single-ion optical clock frequencies 𝜈_Al+/𝜈_Hg+ is 1.052871833148990438(55), where the uncertainty comprises a statistical measurement uncertainty of 4.3 × 10−17, and systematic uncertainties of 1.9 × 10-17 and 2.3 × 10-17 in the mercury and aluminum frequency standards, respectively. Repeated measurements during the past year yield a preliminary constraint on the temporal variation of the fine-structure constant a of \dot{𝛼}/𝛼 = (-1.6 ± 2.3) × 10-17/year.
Optical atomic clocks promise timekeeping at the highest precision and accuracy, owing to their high operating frequencies. Rigorous evaluations of these clocks require direct comparisons between them. We have realized a high-performance remote comparison of optical clocks over kilometer-scale urban distances, a key step for development, dissemination, and application of these optical standards. Through this remote comparison and a proper design of lattice-confined neutral atoms for clock operation, we evaluate the uncertainty of a strontium (Sr) optical lattice clock at the 1 × 10-16 fractional level, surpassing the current best evaluations of cesium (Cs) primary standards. We also report on the observation of density-dependent effects in the spin-polarized fermionic sample and discuss the current limiting effect of blackbody radiation–induced frequency shifts.
We present an experimental study of the lattice-induced light shifts on the 1S0 → 3P0 optical clock transition (clock 518 THz) in neutral ytterbium. The ‘‘magic’’ frequency magic for the 174Yb isotope was determined to be 394 799 475(35) MHz, which leads to a first order light shift uncertainty of 0.38 Hz. We also investigated the hyperpolarizability shifts due to the nearby 6s6p 3P0 → 6s8p 3P0, 6s8p 3P2 , and 6s5f 3F2 two-photon resonances at 759.708, 754.23, and 764.95 nm, respectively. By measuring the corresponding clock transition shifts near these two-photon resonances, the hyperpolarizability shift was estimated to be 170(33) mHz for a linear polarized, 50 K deep, lattice at the magic wavelength. These results indicate that the differential polarizability and hyperpolarizability frequency shift uncertainties in a Yb lattice clock could be held to well below10-17.
The phase coherence of an ultrastable optical frequency reference is fully maintained over actively stabilized fiber networks of lengths exceeding 30 km. For a 7-km link installed in an urban environment, the transfer instability is 6 ×10-18 at 1 s. The excess phase noise of 0.15 rad, integrated from 8 mHz to 25 MHz, yields a total timing jitter of 0.085 fs. A 32-km link achieves similar performance. Using frequency combs at each end of the coherent-transfer fiber link, a heterodyne beat between two independent ultrastable lasers, separated by 3.5 km and 163 THz, achieves a 1-Hz linewidth.
We report the technical aspects of the optical-to-microwave comparison for our recent measurements of the optical frequency of the mercury single-ion frequency standard in terms of the SI second as realized by the NIST-F1 cesium fountain clock. Over the course of six years, these measurementshave resulted in a determination of the mercury single-ion frequency with a fractional uncertainty of less than 7×10-16, making it the most accurately measured optical frequency to date. In this paper, we focus on the details of the comparison techniques used in the experiment and discuss the uncertainties associated with the optical-to-microwave synthesis based on a femtosecond laser frequency comb. We also present our most recent results in the context of the previous measurements of the mercury single-ion frequency and arrive at a final determination of the mercury single-ion optical frequency: f(Hg+) = 1 064 721 609 899 145.30(69) Hz.