AP Chemistry

  • Overview
  • This AP Chemistry course is designed to be the equivalent of the general chemistry course usually taken during the first year of college. Below find general information about our AP Chemistry classes. Class notes, assignments, and study guides will be shared with students via Google Classroom. Also, some resources can be found on AP chemistry resources page. Please check the corresponding AP Chemistry class calendar and Google classroom frequently to check due dates for important assessment and assignment.

Big Ideas :The big ideas serve as the foundation of the course and allow students to create meaningful connections among concepts. They are often abstract concepts or themes that become threads that run throughout the course. Revisiting the big ideas and applying them in a variety of contexts allows students to develop deeper conceptual understanding. Below are the big ideas of the course and a brief description of each.


Big Idea 1: Scale, Proportion, and Quantity (SPQ)

Quantities in chemistry are expressed at both the macroscopic and atomic scale. Explanations, predictions, and other forms of argumentation in chemistry require understanding the meaning of these quantities, and the relationship between quantities at the same scale and across scales.

Big Idea 2: Structure and Properties (SAP)

Properties of substances observable at the macroscopic scale emerge from the structures of atoms and molecules and the interactions between them. Chemical reasoning moves in both directions across these scales. Properties are predicted from known aspects of the structures and interactions at the atomic scale. Observed properties are used to infer aspects of the structures and interactions.

Big Idea 3: Transformations (TRA)

At its heart, chemistry is about the rearrangement of matter. Understanding the details of these transformations requires reasoning at many levels as one must quantify what is occurring both macroscopically and at the atomic level during the process. This reasoning can be as simple as monitoring amounts of products made or as complex as visualizing the intermolecular forces among the species in a mixture. The rate of a transformation is also of interest, as particles must move and collide to initiate reaction events.

Big Idea 4: Energy (ENE)

Energy has two important roles in characterizing and controlling chemical systems. The first is accounting for the distribution of energy among the components of a system and the ways that heat exchanges, chemical reactions, and phase transitions redistribute this energy. The second is in considering the enthalpic and entropic driving forces for a chemical process. These are closely related to the dynamic equilibrium present in many chemical systems and the ways in which changes in experimental conditions alter the positions of these equilibria.