Publications

A comprehensive list of publications can be found on Google Scholar and ResearchGate

In the list below, NMT student advisees are underlined.

2023

26. da Silva, C. L., W. P. Winn, M. C. Taylor, G. D. Aulich, S. J. Hunyady, K. B. Eack, H. E. Edens, R. G. Sonnenfeld, P. R. Krehbiel, E. M. Eastvedt, and J. J. Trueblood (2023), Polarity asymmetries in rocket-triggered lightning, Geophys. Res. Lett., e2023GL105041, doi: 10.1029/2023GL105041.

25. Wemhoner, J., L. Wermer, C. L. da Silva, P. Barnett, C. Radosevich, S. Patel, and H. Edens (2023), Lightning radiometry in visible and infrared bands, Atmos. Res., 292, 106,855, doi: 10.1016/j.atmosres.2023.106855.

24. Contreras-Vidal, L., C. L. da Silva, and R. G. Sonnenfeld (2023), Production of runaway electrons and x-rays during streamer inception phase, J. Phys. D: Appl. Phys., 56, 055201, doi: 10.1088/1361-6463/acaab9.

2022

23. Saba, M. M. F., D. R. R. da Silva, J. G. Pantuso, and C. L. da Silva (2022). Close view of the lightning attachment process unveils the streamer zone fine structure. Geophys. Res. Lett., 49, e2022GL101482, doi: 10.1029/2022GL101482.

22. Taylor, M. C., C. L. da Silva, T. D. Walker, and H. J. Christian (2022), Data-driven simulations of the lightning return stroke channel properties, IEEE Trans. Electromag. Compat., doi: 10.1109/TEMC.2022.3189590.

21. Pantuso, J. G., C. L. da Silva, J. T. Sanchez, and G. S. Bowers (2022), Geant4 simulations of x-ray photon pileup produced by runaway electrons in streamer discharges, Physics of Plasmas, 29 (5), 053,506, doi: 10.1063/5.0086579.

20. Li, D., A. Luque, F. J. Gordillo-Vazquez, C. L. da Silva, P. R. Krehbiel, F. Rachidi, and M. Rubinstein (2022), Secondary fast breakdown in narrow bipolar events, Geophys. Res. Lett., 49 (7), e2021GL097,452, doi: 10.1029/2021GL097452.

2021

19. Attanasio, A., C. L. da Silva, and P. R. Krehbiel (2021), Electrostatic conditions that produce fast Breakdown in thunderstorms, J. Geophys. Res. Atmos., 126, e2021JD034829, doi: 10.1029/2021JD034829.

18. da Silva, C. L., S. D. Salazar, C. G. M. Brum, and P. Terra (2021), Survey of electron density changes in the daytime ionosphere over the Arecibo Observatory due to lightning and solar flares, Scientific Reports, 11(10250), doi: 10.1038/s41598-021-89662-x. 

17. Boggs, L., N. Y. Liu, A. Nag, T. D. Walker, H. Christian, C. L. da Silva, H. Rassoul, M. Austin, and F. Aguirre (2021), Vertical temperature profile of natural lightning return strokes derived from optical spectra, J. Geophys. Res. Atmos., 126(8), e2020JD034,438, doi: 10.1029/2020JD034438.


16. Jensen, D., R. G. Sonnenfeld, M. Stanley, H. Edens, C. L. da Silva, and P. Krehbiel (2021), Dart-leader and K-leader velocity from initiation site to termination time-resolved with 3D interferometry, J. Geophys. Res. Atmos., 126(9), e2020JD034,309, doi: 10.1029/2020JD034309.

15. Contreras-Vidal, L., R. G. Sonnenfeld, C. L. da Silva, M. McHarg, D. Jensen, J. Harley, L. Taylor, R. Haaland, and H. Stenbaek-Nielsen (2021), Relationship between sprite current and morphology, J. Geophys. Res. Space Phys., 126 (3), e2020JA028930, doi: 10.1029/2020JA028930.

2019

14. da Silva, C. L., R. G. Sonnenfeld, H. E. Edens, P. R. Krehbiel, M. G. Quick, and W. J. Koshak (2019), The plasma nature of lightning channels and the resulting nonlinear resistance, J. Geophys. Res. Atmos., 124 (16), 9442–9463, doi: 10.1029/2019JD030693.

13. Attanasio, A., P. R. Krehbiel, and C. L. da Silva (2019), Griffiths and Phelps lightning initiation model, revisited, J. Geophys. Res., 124, doi: 10.1029/2019JD030399. 

12. Denton, R. E., L. Ofman, Y. Y. Shprits, J. Bortnik, R. M. Millan, C. J. Rodger, C. L. da Silva, B. N. Rogers, M. K. Hudson, K. Liu, K. Min, A. Glocer, and C. Komar (2019), Pitch angle scattering of sub-MeV relativistic electrons by electromagnetic ion cyclotron waves, J. Geophys. Res., 124, doi: 10.1029/2018JA026384. 

2018

11. da Silva, C. L., R. E. Denton, M. K. Hudson, R. M. Millan, K. Liu, and J. Bortnik (2018), Test-particle simulations of linear and nonlinear interactions between a 2-D whistler-mode wave packet and radiation belt electrons, Geophys. Res. Lett., 45(11), 5234–5245, doi: 10.1029/2018GL077877. PDF 

2017

10. da Silva, C. L., R. M. Millan, D. G. McGaw, C. T. Yu, A. S. Putter, J. LaBelle, and J. Dwyer (2017), Laboratory measurements of X-ray emissions from centimeter-long streamer corona discharges, Geophys. Res. Lett., 44 (21), 11,174–11,183, doi: 10.1002/2017GL075262 . PDF 

9. da Silva, C. L., S. Wu, R. E. Denton, M. K. Hudson, and R. M. Millan (2017), Hybrid fluid-particle simulation of whistler-mode waves in a compressed dipole magnetic field: Implications for dayside high-latitude chorus, J. Geophys. Res., 122 (1), 432–448, doi: 10.1002/2016JA023446.

2016

8. da Silva, C. L., R. A. Merrill, and V. P. Pasko (2016), Mathematical constraints on the use of transmission line models to investigate the preliminary breakdown stage of lightning flashes, Radio Sci., 51(5), 367–380, doi: 10.1002/2015RS005853.

2015

7. Marshall, R. A., C. L. da Silva, and V. P. Pasko (2015), Elve doublets and compact intracloud discharges, Geophys. Res. Lett., 42 (14), 6112–6119, doi: 10.1002/2015GL064862. 

6. da Silva, C. L., and V. P. Pasko (2015), Physical mechanism of initial breakdown pulses and narrow bipolar events in lightning discharges, J. Geophys. Res., 120(10), 4989–5009, doi: 10.1002/ 2015JD023209. 

2014

5. da Silva, C. L., and V. P. Pasko (2014), Infrasonic acoustic waves generated by fast air heating in sprite cores, Geophys. Res. Lett., 41 (5), 1789–1795, doi: 10.1002/2013GL059164. 

2013

4. da Silva, C. L., and V. P. Pasko (2013), Dynamics of streamer-to-leader transition at reduced air densities and its implications for propagation of lightning leaders and gigantic jets, J. Geophys. Res., 118(24), 13,561–13,590, doi: 10.1002/2013JD020618. 

3. da Silva, C. L., and V. P. Pasko (2013), Vertical structuring of gigantic jets, Geophys. Res. Lett., 40(12), 3315–3319, doi: 10.1002/grl.50596. 

2. da Silva, C. L., and F. T. Sao Sabbas (2013), Consequences of the application of the streamer fluid model to the study of the sprite inception mechanism, Adv. Space Res., 51(10), 1902–1915, doi: 10.1016/j.asr.2012.11.025. 

2012

1. da Silva, C. L., and V. P. Pasko (2012), Simulation of leader speeds at gigantic jet altitudes, Geophys. Res. Lett., 39, L13805, doi: 10.1029/2012GL052251.