A comprehensive list of publications can be found on Google Scholar and ResearchGate.


14. da Silva, C. L., R. G. Sonnenfeld, H. E. Edens, P. R. Krehbiel, M. G. Quick, and W. J. Koshak (2019), The plasma nature of lightning channels and the resulting nonlinear resistance, J. Geophys. Res., Accepted for Publication, doi: 10.1029/2019JD030693.

13. Attanasio, A., P. R. Krehbiel, and C. L. da Silva (2019), Griffiths and Phelps lightning initiation model, revisited, J. Geophys. Res., 124, doi: 10.1029/2019JD030399.

12. Denton, R. E., L. Ofman, Y. Y. Shprits, J. Bortnik, R. M. Millan, C. J. Rodger, C. L. da Silva, B. N. Rogers, M. K. Hudson, K. Liu, K. Min, A. Glocer, and C. Komar (2019), Pitch angle scattering of sub-MeV relativistic electrons by electromagnetic ion cyclotron waves, J. Geophys. Res., 124, doi: 10.1029/2018JA026384.


11. da Silva, C. L., R. E. Denton, M. K. Hudson, R. M. Millan, K. Liu, and J. Bortnik (2018), Test-particle simulations of linear and nonlinear interactions between a 2-D whistler-mode wave packet and radiation belt electrons, Geophys. Res. Lett., 45(11), 5234–5245, doi: 10.1029/2018GL077877. PDF


10. da Silva, C. L., R. M. Millan, D. G. McGaw, C. T. Yu, A. S. Putter, J. LaBelle, and J. Dwyer (2017), Laboratory measurements of X-ray emissions from centimeter-long streamer corona discharges, Geophys. Res. Lett., 44 (21), 11,174–11,183, doi: 10.1002/2017GL075262 . PDF

9. da Silva, C. L., S. Wu, R. E. Denton, M. K. Hudson, and R. M. Millan (2017), Hybrid fluid-particle simulation of whistler-mode waves in a compressed dipole magnetic field: Implications for dayside high-latitude chorus, J. Geophys. Res., 122 (1), 432–448, doi: 10.1002/2016JA023446.


8. da Silva, C. L., R. A. Merrill, and V. P. Pasko (2016), Mathematical constraints on the use of transmission line models to investigate the preliminary breakdown stage of lightning flashes, Radio Sci., 51(5), 367–380, doi: 10.1002/2015RS005853.


7. Marshall, R. A., C. L. da Silva, and V. P. Pasko (2015), Elve doublets and compact intracloud discharges, Geophys. Res. Lett., 42 (14), 6112–6119, doi: 10.1002/2015GL064862.

6. da Silva, C. L., and V. P. Pasko (2015), Physical mechanism of initial breakdown pulses and narrow bipolar events in lightning discharges, J. Geophys. Res., 120(10), 4989–5009, doi: 10.1002/ 2015JD023209.


5. da Silva, C. L., and V. P. Pasko (2014), Infrasonic acoustic waves generated by fast air heating in sprite cores, Geophys. Res. Lett., 41 (5), 1789–1795, doi: 10.1002/2013GL059164.


4. da Silva, C. L., and V. P. Pasko (2013), Dynamics of streamer-to-leader transition at reduced air densities and its implications for propagation of lightning leaders and gigantic jets, J. Geophys. Res., 118(24), 13,561–13,590, doi: 10.1002/2013JD020618.

3. da Silva, C. L., and V. P. Pasko (2013), Vertical structuring of gigantic jets, Geophys. Res. Lett., 40(12), 3315–3319, doi: 10.1002/grl.50596.

2. da Silva, C. L., and F. T. Sao Sabbas (2013), Consequences of the application of the streamer fluid model to the study of the sprite inception mechanism, Adv. Space Res., 51(10), 1902–1915, doi: 10.1016/j.asr.2012.11.025.


1. da Silva, C. L., and V. P. Pasko (2012), Simulation of leader speeds at gigantic jet altitudes, Geophys. Res. Lett., 39, L13805, doi: 10.1029/2012GL052251.