A comprehensive list of publications can be found on Google Scholar and ResearchGate.

In the list below, NMT student advisees are underlined.


24. Contreras-Vidal, L., C. L. da Silva, and R. G. Sonnenfeld (2023), Production of runaway electrons and x-rays during streamer inception phase, J. Phys. D: Appl. Phys., 56, 055201, doi: 10.1088/1361-6463/acaab9.


23. Saba, M. M. F., D. R. R. da Silva, J. G. Pantuso, and C. L. da Silva (2022). Close view of the lightning attachment process unveils the streamer zone fine structure. Geophys. Res. Lett., 49, e2022GL101482, doi: 10.1029/2022GL101482.

22. Taylor, M. C., C. L. da Silva, T. D. Walker, and H. J. Christian (2022), Data-driven simulations of the lightning return stroke channel properties, IEEE Trans. Electromag. Compat., doi: 10.1109/TEMC.2022.3189590.

21. Pantuso, J. G., C. L. da Silva, J. T. Sanchez, and G. S. Bowers (2022), Geant4 simulations of x-ray photon pileup produced by runaway electrons in streamer discharges, Physics of Plasmas, 29 (5), 053,506, doi: 10.1063/5.0086579.

20. Li, D., A. Luque, F. J. Gordillo-Vazquez, C. L. da Silva, P. R. Krehbiel, F. Rachidi, and M. Rubinstein (2022), Secondary fast breakdown in narrow bipolar events, Geophys. Res. Lett., 49 (7), e2021GL097,452, doi: 10.1029/2021GL097452.


19. Attanasio, A., C. L. da Silva, and P. R. Krehbiel (2021), Electrostatic conditions that produce fast Breakdown in thunderstorms, J. Geophys. Res. Atmos., 126, e2021JD034829, doi: 10.1029/2021JD034829.

18. da Silva, C. L., S. D. Salazar, C. G. M. Brum, and P. Terra (2021), Survey of electron density changes in the daytime ionosphere over the Arecibo Observatory due to lightning and solar flares, Scientific Reports, 11(10250), doi: 10.1038/s41598-021-89662-x.

17. Boggs, L., N. Y. Liu, A. Nag, T. D. Walker, H. Christian, C. L. da Silva, H. Rassoul, M. Austin, and F. Aguirre (2021), Vertical temperature profile of natural lightning return strokes derived from optical spectra, J. Geophys. Res. Atmos., 126(8), e2020JD034,438, doi: 10.1029/2020JD034438.

16. Jensen, D., R. G. Sonnenfeld, M. Stanley, H. Edens, C. L. da Silva, and P. Krehbiel (2021), Dart-leader and K-leader velocity from initiation site to termination time-resolved with 3D interferometry, J. Geophys. Res. Atmos., 126(9), e2020JD034,309, doi: 10.1029/2020JD034309.

15. Contreras-Vidal, L., R. G. Sonnenfeld, C. L. da Silva, M. McHarg, D. Jensen, J. Harley, L. Taylor, R. Haaland, and H. Stenbaek-Nielsen (2021), Relationship between sprite current and morphology, J. Geophys. Res. Space Phys., 126 (3), e2020JA028930, doi: 10.1029/2020JA028930.


14. da Silva, C. L., R. G. Sonnenfeld, H. E. Edens, P. R. Krehbiel, M. G. Quick, and W. J. Koshak (2019), The plasma nature of lightning channels and the resulting nonlinear resistance, J. Geophys. Res. Atmos., 124 (16), 9442–9463, doi: 10.1029/2019JD030693.

13. Attanasio, A., P. R. Krehbiel, and C. L. da Silva (2019), Griffiths and Phelps lightning initiation model, revisited, J. Geophys. Res., 124, doi: 10.1029/2019JD030399.

12. Denton, R. E., L. Ofman, Y. Y. Shprits, J. Bortnik, R. M. Millan, C. J. Rodger, C. L. da Silva, B. N. Rogers, M. K. Hudson, K. Liu, K. Min, A. Glocer, and C. Komar (2019), Pitch angle scattering of sub-MeV relativistic electrons by electromagnetic ion cyclotron waves, J. Geophys. Res., 124, doi: 10.1029/2018JA026384.


11. da Silva, C. L., R. E. Denton, M. K. Hudson, R. M. Millan, K. Liu, and J. Bortnik (2018), Test-particle simulations of linear and nonlinear interactions between a 2-D whistler-mode wave packet and radiation belt electrons, Geophys. Res. Lett., 45(11), 5234–5245, doi: 10.1029/2018GL077877. PDF


10. da Silva, C. L., R. M. Millan, D. G. McGaw, C. T. Yu, A. S. Putter, J. LaBelle, and J. Dwyer (2017), Laboratory measurements of X-ray emissions from centimeter-long streamer corona discharges, Geophys. Res. Lett., 44 (21), 11,174–11,183, doi: 10.1002/2017GL075262 . PDF

9. da Silva, C. L., S. Wu, R. E. Denton, M. K. Hudson, and R. M. Millan (2017), Hybrid fluid-particle simulation of whistler-mode waves in a compressed dipole magnetic field: Implications for dayside high-latitude chorus, J. Geophys. Res., 122 (1), 432–448, doi: 10.1002/2016JA023446.


8. da Silva, C. L., R. A. Merrill, and V. P. Pasko (2016), Mathematical constraints on the use of transmission line models to investigate the preliminary breakdown stage of lightning flashes, Radio Sci., 51(5), 367–380, doi: 10.1002/2015RS005853.


7. Marshall, R. A., C. L. da Silva, and V. P. Pasko (2015), Elve doublets and compact intracloud discharges, Geophys. Res. Lett., 42 (14), 6112–6119, doi: 10.1002/2015GL064862.

6. da Silva, C. L., and V. P. Pasko (2015), Physical mechanism of initial breakdown pulses and narrow bipolar events in lightning discharges, J. Geophys. Res., 120(10), 4989–5009, doi: 10.1002/ 2015JD023209.


5. da Silva, C. L., and V. P. Pasko (2014), Infrasonic acoustic waves generated by fast air heating in sprite cores, Geophys. Res. Lett., 41 (5), 1789–1795, doi: 10.1002/2013GL059164.


4. da Silva, C. L., and V. P. Pasko (2013), Dynamics of streamer-to-leader transition at reduced air densities and its implications for propagation of lightning leaders and gigantic jets, J. Geophys. Res., 118(24), 13,561–13,590, doi: 10.1002/2013JD020618.

3. da Silva, C. L., and V. P. Pasko (2013), Vertical structuring of gigantic jets, Geophys. Res. Lett., 40(12), 3315–3319, doi: 10.1002/grl.50596.

2. da Silva, C. L., and F. T. Sao Sabbas (2013), Consequences of the application of the streamer fluid model to the study of the sprite inception mechanism, Adv. Space Res., 51(10), 1902–1915, doi: 10.1016/j.asr.2012.11.025.


1. da Silva, C. L., and V. P. Pasko (2012), Simulation of leader speeds at gigantic jet altitudes, Geophys. Res. Lett., 39, L13805, doi: 10.1029/2012GL052251.