Publications

Peer-Reviewed Publications

55.  Muhlenkamp, J.A; Cho, Y.; Hicks, J.C.*, "Modulating Propane Dehydrogenation Performance and Stability of Ni2P with Co Doping", Catalysis Letters, 2023, https://doi.org/10.1007/s10562-023-04357-4.

54.  Barboun, P.; Otor, H.; Ma, H.; Goswami, A.; Schneider, W.F.*; Hicks, J.C.*, “Plasma-Catalyst Reactivity Control of Surface Nitrogen Species through Plasma-Temperature Programmed Hydrogenation to Ammonia", ACS Sustainable Chemistry & Engineering, 2022, 10 (48), 15741-15748. https://doi.org/10.1021/acssuschemeng.2c04217

53.  Muhlenkamp, J.; Hicks, J.C.*, “Consequences of propane dehydrogenation and oxidative regeneration on Ni-phosphide phase stability”, Ind. Eng. Chem. Res., 2022, 61, 39, 14472–14481. https://doi.org/10.1021/acs.iecr.2c02514

52.  Magazova, G.; Cho, Y.; Muhlenkamp, J.; Hicks, J.C.*, “Remarkable Stability of Ni-Modified Polyoxometalates to H2, CO, and CH4 during Propylene Oligomerization”, Applied Catalysis A: General, Applied Catalysis A: General, 2022, 647, 118914, https://doi.org/10.1016/j.apcata.2022.118914.

51.  Geng, F.; Haribal, V.P.; Hicks, J.C.*, “Non-thermal plasma-assisted steam methane reforming for electrically-driven hydrogen production”, Applied Catalysis A: General, 2022, 647, 118903, https://doi.org/10.1016/j.apcata.2022.118903.

50.  Magazova, G.; Cho, Y.; Muhlenkamp, J.; Hicks, J.C.*, “Single-site, Ni-modified Wells–Dawson-type polyoxometalate for propylene dimerization”, Catalysis Science & Technology, 2022, 12, 5970-5981. DOI: 10.1039/D2CY01065H

49.  Clarke, R.; Hicks, J.C.*, “Interrogation of the Plasma-Catalyst Interface via In Situ/Operando Transmission Infrared Spectroscopy”, ACS Engineering Au, 2022, 2, 6, 535–546. https://doi.org/10.1021/acsengineeringau.2c00026

48.  Yan, C.;  Waitt, C.;  Akintola, I.;  Lee, G.;  Easa, J.;  Clarke, R.;  Geng, F.;  Poirier, D.;  Otor, H. O.;  Rivera-Castro, G.;  Go, D. B.;  O’Brien, C. P.;  Hicks, J. C.;  Schneider, W. F.; Ma, H., Recent Advances in Plasma Catalysis. Journal of Physical Chemistry C, 2022, 126 (23), 9611-9614.  https://doi.org/10.1021/acs.jpcc.2c03062

47.  Muhlenkamp, J.; LiBretto, N. J.; Miller, J.; Hicks, J.C.*, “Ethane Dehydrogenation Performance and High Temperature Stability of Silica Supported Cobalt Phosphide Nanoparticles”, Catalysis Science & Technology, 2022, 12, 976-985.  https://doi.org/10.1039/D1CY01737C

46.  Cho, Y.; Muhlenkamp, J.; Oliver, A.; Hicks, J.C.*, “Catalytic Ethylene Oligomerization on Stable Ni2+ Single Sites on Lacunary Defects of Wells Dawson Polyoxometalates”, ChemComm, 2021, 57, 100, 13772-13775 DOI: https://doi.org/10.1039/D1CC05377A

45.  Geng, F.; and Hicks, J.C.*, " Promoting Methanol Synthesis and Inhibiting CO2 Methanation with Bimetallic In-Ru Catalysts", ACS Sustainable Chemistry & Engineering, 2021, 9, 35, 11891–11902.  https://doi.org/10.1021/acssuschemeng.1c03865

44.  Shrestha, A.; Gao, X.; Hicks, J.C.; and Paolucci, C.*, "Nanoparticle Size Effects on Phase Stability for Molybdenum and Tungsten Carbides", Chemistry of Materials, 2021, 33, 12, 4606–4620. https://doi.org/10.1021/acs.chemmater.1c01120

43. Barboun, P.; Daemon L.; Waitt, C., Wu, Z.; Schneider, W.F.; and Hicks, J.C.*, “Inelastic Neutron Scattering Observation of Plasma-Promoted Nitrogen Reduction Intermediates on Ni/Al2O3”, ACS Energy Letters, 2021, 6, 2048–2053. https://doi.org/10.1021/acsenergylett.1c00643

42. Yu, Y.*; Mora-Seró, I.*; Hicks, J.C.*; “Energy Spotlight Advances in Storage Batteries, Layered Hybrid Perovskites and Organic Photovoltaics, and Plasma Activated Ammonia Synthesis”, ACS Energy Letters, 2021, 6, 2, 710-712. https://doi.org/10.1021/acsenergylett.1c00140

41. Bogaerts, A.; Tu, X.; Whitehead, J.C.; Centi, G.; Lefferts, L.; Guaitella, O.; Azzolina-Jury, F.; Kim, H.-H.; Murphy, A.B.; Schneider, W.F.; Nozaki, T.; Hicks, J.C.; Rousseau, A.; Thevenet, F.; Khacef, A.; Carreon, M.; “The Plasma Catalysis Roadmap”, Journal of Physics D: Applied Physics, 2020, 53, 44, 443001. https://doi.org/10.1088/1361-6463/ab9048

40. Ko, J.; Muhlenkamp, J.A.; Bonita, Y.; Libretto, N.J.; Miller, J.T.; Hicks, J.C.* and Schneider, W.F.*, "Experimental and computational investigation of the role of P in selective ethane dehydrogenation over Ni2P catalyst", Industrial & Engineering Chemistry Research, 2020, 59 (28), 12666-12676, https://doi.org/10.1021/acs.iecr.0c00908 

39. Geng, F.; Bonita, Y.; Jain, V.; Magiera, M.; Rai, N. and Hicks, J.C.*, "Bimetallic Ru-Mo Phosphide Catalysts for the Hydrogenation of CO2 to Methanol", Industrial & Engineering Chemistry Research, 2020, 59 (15), 6931-6943. https://doi.org/10.1021/acs.iecr.9b06937 

38.  Turan, N.; Barboun, P.M.; Nayak, P.K.; Hicks, J.C.; David B. Go*, "Development of a small-scale helical surface dielectric barrier discharge for characterizing plasma-surface interfaces", Journal of Physics D: Applied Physics, 2020, 53, 275201. https://doi.org/10.1088/1361-6463/ab8320 

37.  Mehta, P.; Barboun, P.; Engelmann, Y.; Go, D.B.; Bogaerts, A.; Schneider, W.F.*, and Hicks, J.C.*, “Plasma-Catalytic Ammonia Synthesis Beyond the Equilibrium Limit”, ACS Catalysis, 2020, 10, 12, 6726–6734. https://doi.org/10.1021/acscatal.0c00684 

36.  Bonita, Y.; Jain, V.; O’Connell, T.; Wilson, W.; Ramos, N.X.; Rai, N. and Hicks, J.C.*, "Hydrogenation of cinnamaldehyde to cinnamyl alcohol with metal phosphides: Catalytic consequences of product and pyridine doping", Applied Catalysis B: Environmental, 2020, 277, 119272. https://doi.org/10.1016/j.apcatb.2020.119272 

35.   Barboun, P. and Hicks, J.C.*, “Unconventional Catalytic Approaches to Ammonia Synthesis”, Annual Review of Chemical and Biomolecular Engineering, 2020, 11, 503-521. https://doi.org/10.1146/annurev-chembioeng-092319-080240 

34.   Bonita, Y.; Jain, V.; Geng, F.; Wilson, W.; Rai, N. and Hicks, J.C.*, "Direct Synthesis of Furfuryl Alcohol from Furfural: Catalytic Performance of Monometallic and Bimetallic Mo and Ru Phosphides" Catalysis Science & Technology, 2019, 9, 3656-3668, DOI: : 10.1039/C9CY00705A 

33.   Barboun, P.; Mehta, P.; Go, D.B.; Schneider, W.F.; and Hicks, J.C.*, "Distinguishing Plasma Contributions to Catalyst Performance in Plasma-Assisted Ammonia Synthesis", ACS Sustainable Chemistry & Engineering, 2019, 7, 9, 8621-8630. DOI: 10.1021/acssuschemeng.9b00406 

32.   Mehta, P.; Barboun, P.; Herrera, F.A.; Kim, J.; Rumbach, P.; Go, D.B.*; Hicks, J.C.*; and Schneider, W.F.*, "Catalysis Enabled by Plasma Activation of Strong Chemical Bonds: a Review", ACS Energy Letters, 2019, DOI: 10.1021/acsenergylett.9b00263

31.   Herrera, F.; Brown, G.; Barboun, P.; Turan, N.; Mehta, P.; Schneider, W.; Hicks , J.; Go, D.*, “The Impact of Transition Metal Catalysts on Macroscopic Dielectric Barrier Discharge (DBD) Characteristics in an Ammonia Synthesis Plasma Catalysis Reactor,” Journal of Physics D: Applied Physics, 2019, 52 224002. DOI: 10.1088/1361-6463/ab0c58

30.   Bonita, Y.; O'Connell, T. P.; Miller, H. E. and Hicks, J. C.*, "Revealing The Hydrogenation Performance of RuMo Phosphide For Chemoselective Reduction of Functionalized Aromatic Hydrocarbons", Industrial & Engineering Chemistry Research, 2019, 58 (9), pp 3650–3658; DOI: 10.1021/acs.iecr.8b06295 

29.   Jain, V.; Bonita, Y.; Brown, A.; Taconi, A.; Hicks, J.C., and Rai, N.*, "Mechanistic Insights into Hydrodeoxygenation of Phenol on Bimetallic Phosphide Catalysts", Catalysis Science & Technology, 2018, DOI: 10.1039/C8CY00977E

28.   Mehta, P.; Barboun, P.; Herrera, F.A.; Kim, J.; Rumbach, P.; Go, D.B.; Hicks, J.C.; and Schneider, W.F.*, “Overcoming Ammonia Synthesis Scaling Relations with Plasma-enabled Catalysis”, Nature Catalysis, 2018, 1 (4), 269. DOI: 10.1038/s41929-018-0045-1

27.   Bonita, Y.; Hicks, J.C.*, “Periodic Trends from Metal Substitution in Bimetallic Mo-Based Phosphides for Hydrodeoxygenation and Hydrogenation Reactions”, J. Phys. Chem. C, 2018, 122 (25), pp 13322–13332. DOI: 10.1021/acs.jpcc.7b09363

26.   Kim, J.; Go, D.B.; Hicks, J.C.*, “Synergistic effects of plasma–catalyst interactions for CH4 activation”, Phys. Chem. Chem. Phys., 2017, 19, 13010-13021, DOI: 10.1039/C7CP01322A.

25.   Rensel, D.J.; Kim, J.; Jain, V.; Bonita, Y.; Rai, N.* and Hicks, J.C.*, “Composition-directed FeXMo2−XP bimetallic catalysts for hydrodeoxygenation reactions”, Catal. Sci. Technol., 2017, 7, 1857-1867, DOI:10.1039/C7CY00324B 

24.   Kim, J.; Abbott, M.S.; Go, D.B.; Hicks, J.C.*, “Enhancing C-H Bond Activation of Methane via Temperature-Controlled, Metal-Plasma Interactions”, ACS Energy Letters, 2016, 1, 94–99, DOI: 10.1021/acsenergylett.6b00051. 

23.   Rensel, D.J.; Kim, J.; Bonita, Y.; Hicks, J.C.*, “Investigating the multifunctional nature of bimetallic FeMoP catalysts using dehydration and hydrogenolysis reactions”, Applied Catalysis A: General, 2016, 524, 85-93, DOI:10.1016/j.apcata.2016.06.011.

22.   Kim, J.; McNamara, N.D.; Hicks, J.C.*, Stability and Catalytic Activity of Carbon Supported V Oxides and Carbides Synthesized via Pyrolysis of MIL-47 (V), Applied Catalysis A: General, 2016, 517, 141-150, DOI:10.1016/j.apcata.2016.03.011.

21.   McNamara, N.D.; Kim, J.; Hicks, J.C.*, Controlling the Pyrolysis Conditions of Microporous/Mesoporous MIL-125 to Synthesize Porous, Carbon-Supported Ti Catalysts with Targeted Ti Phases for the Oxidation of Dibenzothiophene, Energy & Fuels, 2015, 30, 594-602, DOI: 10.1021/acs.energyfuels.5b01946.

20.   Kim, J.; Oliver, A.; Hicks, J.C.*, “Enhanced CO2 Capture Capacities and Efficiencies with N-Doped Nanoporous Carbons Synthesized from Zn-MOFs Containing Pyridinedicarboxylate Linkers”, CrystEngComm, 2015, 17, 8015-8020, DOI: 10.1039/c5ce00828j.

19.  Kim, J.; Oliver, A.; Neumann, G.T.; Hicks, J.C.*, “Zn‐MOFs Containing Pyridine and Bipyridine Carboxylate Organic Linkers and Open Zn2+ Sites”, European Journal of Inorganic Chemistry, 2015, 3011–3018.  DOI: 10.1002/ejic.201500245

18.  McNamara, N.D.; Hicks, J.C.*, “Chelating Agent-Free, Vapor-Assisted Crystallization Method to Synthesize Hierarchical Microporous/Mesoporous (Ti) MIL-125”, ACS Applied Materials & Interfaces, 2015, 7, 5338–5346. DOI: 10.1021/am508799d

17.  Kim, J.; Neumann, G.T.; McNamara, N.D.; Hicks, J.C.*, “Exceptional Control of Catalytic Hierarchical Carbon Supported Transition Metal Nanoparticles using Metal-Organic Framework Templates”, J. Mater. Chem. A, 2014, 2, 14014-14027. DOI: 10.1039/C4TA03050H

16.  Neumann, G.T.; Pimentel, B.R.§; Rensel, D.J.; Hicks, J.C.*, “Correlating lignin structure to value-added products in the catalytic fast pyrolysis of lignin model compounds containing β-O-4 linkages”, Catalysis Science & Technology, 2014, 4, 3953-3963.  DOI: 10.1039/C4CY00569D

15.  McNamara, N.D.; Hicks, J.C.*, “CO2 Capture and Conversion with a Multifunctional Polyethyleneimine-Tethered Iminophosphine Iridium Catalyst/Adsorbent”, ChemSusChem, 2014, 7, 1114-1124. DOI: 10.1002/cssc.201301231

14.  Kim, J.; McNamara, N.D.; Her, T.H.§; Hicks, J.C.*, “Carbothermal Reduction of Ti-Modified IRMOF-3: An Adaptable Synthetic Method to Support Catalytic Nanoparticles on Carbon”, ACS Applied Materials & Interfaces, 2013, 5, 11479-11487, DOI: 10.1021/am404089v

13.  Rensel, D.J.; Rouvimov, S.; Gin, M.E.§; Hicks, J.C.*, “Highly selective bimetallic FeMoP catalyst for C-O bond cleavage of aryl ethers”, Journal of Catalysis, 2013, 305, 256-263. DOI: 10.1016/j.jcat.2013.05.026

12.  McNamara, N.D.; Neumann, G.T.; Masko, E.T.§; Urban, J.A.§; Hicks, J.C.*, “Catalytic Performance and Stability of (V) MIL-47 and (Ti) MIL-125 in the Oxidative Desulfurization of Heterocyclic Aromatic Sulfur Compounds”, Journal of Catalysis, 2013, 305, 217-226. DOI: 10.1016/j.jcat.2013.05.021

11.  Neumann, G.T.; Hicks, J.C.*, “Dual Roles of Steam in the Dry Gel Synthesis of Mesoporous ZSM-5”, Crystal Growth & Design, 2013, 13, 1535–1542. DOI: 10.1021/cg301784m

10.  Xu, Z.; McNamara, N. D.; Neumann, G. T.; Schneider, W. F.; Hicks, J. C.*, “Catalytic Hydrogenation of CO2 to Formic Acid with Silica-Tethered Iridium Catalysts”, ChemCatChem, 2013, 5, 1769–1771. DOI: 10.1002/cctc.201200839

9.   Neumann, G.T.; Hicks, J.C.*, “Effects of Cerium and Aluminum in Cerium-Containing Hierarchical HZSM-5 Catalysts for Biomass Upgrading”, Topics in Catalysis, 2012, 55, 196–208. DOI: 10.1007/s11244-012-9788-0 (Invited)

8.   Hicks, J.C.*, “Chemical and Biochemical Catalysis for Next Generation Biofuels, Blake A. Simmons (Ed.)”, Catalysis Letters, 2012, 142, 655-656.  DOI: 10.1007/s10562-012-0835-z (Invited)

7.   Neumann, G.T.; Hicks, J.C.*, “Novel Hierarchical Cerium-Incorporated MFI Zeolite Catalysts for the Catalytic Fast Pyrolysis of Lignocellulosic Biomass”, ACS Catalysis, 2012, 2, 642–646. DOI: 10.1021/cs200648q

6.   Hicks, J.C.*, “Advances in C-O Bond Transformations in Lignin and Lignin-Derived Compounds in Bio-oils for Biofuels Production”, J. Phys. Chem. Lett., 2011, 2, 2280-2287. DOI: 10.1021/jz2007885 (Invited)

5.   Hicks, J.C.; Drese, J.; Fauth, D.J.; Gray, M.; Qi, G.G.; Jones, C.W.*; “Designing Adsorbents for CO2 Capture From Flue Gas - Hyperbranched Aminosilicas Capable of Capturing CO2 Reversibly”, J. Am. Chem. Soc., 2008, 130, 2902-2903. DOI: 10.1021/ja077795v

4.   Hicks, J.C.; Dabestani, R.; Buchanan III, A.C.; Jones, C.W.*; “Assessing Site-Isolation of Amine Groups on Aminopropyl-Functionalized SBA-15 Materials via Spectroscopic and Reactivity Probes”, Inorganica Chimica Acta, 2008, 361, 3024-3032. DOI: 10.1016/j.ica.2008.01.002

3.  Hicks, J.C.; Mullis, B.A.§; Jones, C.W.*; “Sulfonic Acid Functionalized SBA-15 Silica as a Methylaluminoxane-Free Cocatalyst/Support for Ethylene Polymerization”,  J. Am. Chem. Soc., 2007, 129, 8426-8427. DOI: 10.1021/ja0727870

2.  Hicks, J.C.; Dabestani, R.; Buchanan III, A. C.; Jones, C. W.*; “Spacing and Site Isolation of Amine Groups in 3-Aminopropyl-Grafted Silica Materials – the Role of Protecting Groups”, Chem. Mater., 2006, 18, 5022-5032. DOI: 10.1021/cm061382w

1.  Hicks, J.C.; Jones, C.W.*; “Controlling the Density of Amine Sites on Silica Surfaces Using Benzyl Spacers,” Langmuir, 2006, 22, 2676-2681. DOI: 10.1021/la053024y

Patents/Patent Applications

5.    Hicks, J.C.; Neumann, G.T., “Cerium-Containing Zeolites and Coke Reduction Methods”, U.S. Patent US 8,969,599 B2.

4.    Naae, D.G.; Hicks, J.C.; Mayer, J.F.; Trevino, H., Villegas, J.I.;, “Process for Producing a Refinery Stream-Compatible Bio-Oil from a Lignocellulosic Feedstock,”  US Patent App. 13/631,182, WO Patent 2,013,049,665.

3.    Stevens, J.; Young, M.; Euhus, D.; Coulthard, A.; Naae, D.; Spilker, K.; Hicks, J.C.; Bhattacharya, S.; Spindler, P.; “Solvent-Enhanced Biomass Liquefaction,” US Patent App. 13/079,777, WO Patent 2,012,005,784.

2.    Stevens, J.F.; Karanjikar, M.R.; Spilker, K.K.; Naae, D.G.; Essl, D.P.; Ricci, P.C.; Mirkovic, Z.; Vu, T.M.; DeCanio, S.J.; Rovner, J.M.; Hicks, J.C.; “Integrated Biofuel Process”, US Patent App. 12/477,450.

1.    Jones, C.W., Hicks, J.C., Gray, M., Fauth, D., “Structures for Capturing CO2, Methods of Making the Structures, and Methods of Capturing CO2,” US Patent 8,298,986.

Book Chapters

3.    Bonita, Y.; Hicks, J.C.*; “Metal Phosphides and their Applications in Catalysis”, in Novel Catalytic Materials; Catalysis Series, (Eds.) Justin Hargreaves, Andrew McFarlane, and Said Laassiri, RSC, 2018.

2.    Neumann, G.T.; Garcia, D.F.; Hicks, J.C.*; “Catalysts for Biofuels,” in Heterogeneous Catalysis at the Nanoscale for Energy Applications, (Eds.) Tao, Schneider, and Kamat, Wiley-VCH, 2015.

1.    Hicks, J.C.; Jones, C.W.*; “Tethered Catalysts on Inorganic Oxides,” in Tailor Made Polymers, J. Severn, Ed., Wiley-VCH, 2007