Journal Articles By Category
Categories A – Z:
AI, Robotics, and Automated Experimentation
12. “Robotic Workstation for Microscale Synthetic Chemistry: On-Line Absorption Spectroscopy, Quantitative Automated Thin Layer Chromatography, and Multiple Reactions in Parallel,” Lindsey, J. S.; Corkan, L. A.; Erb, D.; Powers, G. J. Rev. Sci. Instrum. 1988, 59, 940–950. DOI: 10.1063/1.1139755
24. “A retrospective on the automation of laboratory synthetic chemistry,” Lindsey, J. S. Chemom. Intell. Lab. Syst.: Lab. Inf. Mgt. 1992, 17, 15–45. DOI: 10.1016/0169-7439(92)90025-B
25. “Experiment manager software for an automated chemistry workstation, including a scheduler for parallel experimentation,” Corkan, L. A.; Lindsey, J. S. Chemom. Intell. Lab. Syst.: Lab. Inf. Mgt. 1992, 17, 47–74. DOI: 10.1016/0169-7439(92)90026-C
26. “Experiment Planner for Strategic Experimentation with an Automated Chemistry Workstation,” Plouvier, J.-C.; Corkan, L. A.; Lindsey, J. S. Chemom. Intell. Lab. Syst.: Lab. Inf. Mgt. 1992, 17, 75–94. DOI: 10.1016/0169-7439(92)90027-D
27. “Application of an automated chemistry workstation to problems in synthetic chemistry,” Corkan, L. A.; Plouvier, J.-C.; Lindsey, J. S. Chemom. Intell. Lab. Syst.: Lab. Inf. Mgt. 1992, 17, 95–105. DOI: 10.1016/0169-7439(92)90028-E
28. “Toward high-performance parallel experimentation machines. Use of a scheduler as a quantitative computer-aided design tool for evaluating workstation performance,” J. S. Lindsey and L. A. Corkan, Chemom. Intell. Lab. Syst.: Lab. Inf. Mgt. 1993, 21, 139–150. DOI: 10.1016/0169-7439(93)89004-T
38. “Flexible protocols improve parallel experimentation throughput,” Aarts, R. J.; Lindsey, J. S.; Corkan, L. A.; Smith, S. F. Clin. Chem. 1995, 41, 1004–1010. DOI: 10.1093/clinchem/41.7.1004
63. “Investigation of Cocatalysis Conditions using an Automated Microscale Multireactor Workstation: Synthesis of meso-Tetramesitylporphyrin,” Wagner, R. W.; Li, F.; Du, H.; Lindsey, J. S. Org. Process Res. Dev. 1999, 3, 28–37. DOI: 10.1021/op9800459
71. “An automated microscale chemistry workstation capable of parallel, adaptive experimentation,” Du, H.; Corkan, L. A.; Yang, K.; Kuo, P. Y.; Lindsey, J. S. Chemom. Intell. Lab. Syst. 1999, 48, 181–203. DOI: 10.1016/S0169-7439(99)00019-2
72. “Decision-tree programs for an adaptive automated chemistry workstation: Application to catalyst screening experiments,” Du, H.; Shen, W.; Kuo, P. Y.; Lindsey, J. S. Chemom. Intell. Lab. Syst. 1999, 48, 205–217. DOI: 10.1016/S0169-7439(99)00020-9
73. “A planning module for performing grid search, factorial design, and related combinatorial studies on an automated chemistry workstation,” Kuo, P. Y.; Du, H.; Corkan, L. A.; Yang, K.; Lindsey, J. S. Chemom. Intell. Lab. Syst. 1999, 48, 219–234. DOI: 10.1016/S0169-7439(99)00021-0
74. “Implementation of the multidirectional search algorithm on an automated chemistry workstation. A parallel yet adaptive approach for reaction optimization,” Du, H.; Jindal, S.; Lindsey, J. S. Chemom. Intell. Lab. Syst. 1999, 48, 235–256. DOI: 10.1016/S0169-7439(99)00022-2
75. “Further development of a versatile microscale automated workstation for parallel adaptive experimentation,” Cork, D. G.; Sugawara, T.; Lindsey, J. S.; Corkan, L. A.; Du, H. Lab. Robot. Autom. 1999, 11, 217–223. DOI: 10.1002/(SICI)1098-2728(1999)11:4<217::AID-LRA6>3.0.CO;2-C
109. “An experiment planner for performing successive focused grid searches with an automated chemistry workstation,” Dixon, J. M.; Du, H.; Cork, D. G.; Lindsey, J. S. Chemom. Intell. Lab. Syst. 2002, 62, 115–128. DOI: 10.1016/S0169-7439(02)00009-6
110. “A parallel simplex search method for use with an automated chemistry workstation,” Matsumoto, T.; Du, H.; Lindsey, J. S. Chemom. Intell. Lab. Syst. 2002, 62, 129–147. DOI: 10.1016/S0169-7439(02)00010-2
111. “A two-tiered strategy for simplex and multidirectional optimization of reactions with an automated chemistry workstation,” Matsumoto, T.; Du, H.; Lindsey, J. S. Chemom. Intell. Lab. Syst. 2002, 62, 149–158. DOI: 10.1016/S0169-7439(02)00011-4
112. “An approach for parallel and adaptive screening of discrete compounds followed by optimization using an automated chemistry workstation,” Du, H.; Lindsey, J. S. Chemom. Intell. Lab. Syst. 2002, 62, 159–170. DOI: 10.1016/S0169-7439(02)00012-6
174. “An Experiment Planner for Parallel Multidirectional Searches Using an Automated Chemistry Workstation,” Dixon, J. M.; Lindsey, J. S. J. Assoc. Lab. Autom. 2004, 9, 355–363. DOI: 10.1016/j.jala.2004.08.001
175. “Performance of Search Algorithms in the Examination of Chemical Reaction Spaces Using an Automated Chemistry Workstation,” Dixon, J. M.; Lindsey, J. S. J. Assoc. Lab. Autom. 2004, 9, 364–374. DOI: 10.1016/j.jala.2004.08.004
B3. “Design Concepts for Synthetic Chemistry Workstations,” Corkan, A.; Lindsey, J. S. In Advances in Laboratory Automation Robotics Vol. 6, Strimaitis, J. R.; Helfrich, J. P., Eds., Zymark Corp. (Hopkinton, MA), 1990, 477–497.
B4. “Robotic Thin Layer Chromatography Instrument for Synthetic Chemistry,” Corkan, L. A.; Haynes, E.; Kline, S.; Lindsey, J. S. In New Trends in Radiopharmaceutical Synthesis, Quality Assurance, and Regulatory Control; Emran, A. M. Ed., Plenum Press: New York, 1991, 355–370.
B8. “Automated Approaches Toward Reaction Optimization,” Lindsey, J. S. In A Practical Guide To Combinatorial Chemistry; Czarnik, A.; Hobbs-Dewitt, S., Eds.; American Chemical Society: Washington, DC, 1997, pp 309–326.
B9. “An Automated Microscale Chemistry Workstation Capable of Parallel, Adaptive Experimentation,” Du, H.; Corkan, L. A.; Yang, K.; Kuo, P. Y.; Lindsey, J. S. In Laboratory Automation in the Chemical Industries; Cork, D. G.; Sugawara, T., Eds.; Marcel Dekker, Inc.: New York, 2002, pp 73–110. (a reprint of Chemom. Intell. Lab. Syst. 1999, 48, 181–203.)
462. "Acquisition of Absorption and Fluorescence Spectral Data Using Chatbots,” Taniguchi, M.; Lindsey, J. S. Digit. Discov. 2025, 4, 21–34. DOI: 10.1039/D4DD00255E
Bacteriochlorins
184. “De Novo Synthesis of Stable Tetrahydroporphyrinic Macrocycles: Bacteriochlorins and a Tetradehydrocorrin,” Kim, H.-J.; Lindsey, J. S. J. Org. Chem. 2005, 70, 5475–5486. DOI: 10.1021/jo050467y
219. “Regioselective 15-Bromination and Functionalization of a Stable Synthetic Bacteriochlorin,” Fan, D.; Taniguchi, M.; Lindsey, J. S. J. Org. Chem. 2007, 72, 5350–5357. DOI: 10.1021/jo070785s
226. “Synthesis and Photophysical Characterization of Porphyrin, Chlorin, and Bacteriochlorin Molecules Bearing Tethers for Surface Attachment,” Muthiah, C.; Taniguchi, M.; Kim, H.-J.; Schmidt, I.; Kee, H. L.; Holten, D.; Bocian, D. F.; Lindsey, J. S. Photochem. Photobiol. 2007, 83, 1513–1528. DOI: 10.1111/j.1751-1097.2007.00195.x
227. “Examination of Tethered Porphyrin, Chlorin, and Bacteriochlorin Molecules in Mesoporous Metal-Oxide Solar Cells,” Stromberg, J. R.; Marton, A.; Kee, H. L.; Kirmaier, C.; Diers, J. R.; Muthiah, C.; Taniguchi, M.; Lindsey, J. S.; Bocian, D. F.; Meyer, G. J.; Holten, D. J. Phys. Chem. C 2007, 15464–15478. DOI: 10.1021/jp0749928
234. “Synthesis and Excited-State Photodynamics of a Chlorin–Bacteriochlorin Dyad – Through-Space Versus Through-Bond Energy Transfer In Tetrapyrrole Arrays,” Muthiah, C.; Kee, H. L.; Diers, J. R.; Fan, D.; Ptaszek, M.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Photochem. Photobiol. 2008, 84, 786–801. DOI: 10.1111/j.1751-1097.2007.00258.x
235. “Accessing the Near-Infrared Spectral Region with Stable, Synthetic, Wavelength-Tunable Bacteriochlorins,” Taniguchi, M.; Cramer, D. L.; Bhise, A. D.; Kee, H. L.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2008, 32, 947–958. (Cover art for the issue containing paper 235) DOI: 10.1039/B717803D
239. “Swallowtail Bacteriochlorins. Lipophilic Absorbers for the Near-Infrared,” Borbas, K. E.; Ruzié, C.; Lindsey, J. S. Org. Lett. 2008, 10, 1931–1934. DOI: 10.1021/ol800436u
242. “Tailoring a Bacteriochlorin Building Block with Cationic, Amphipathic, or Lipophilic Substituents,” Ruzié, C.; Krayer, M.; Balasubramanian, T.; Lindsey, J. S. J. Org. Chem. 2008, 73, 5806–5820. DOI: 10.1021/jo800736c
243. “Examination of Chlorin–Bacteriochlorin Energy-Transfer Dyads as Prototypes for Near-Infrared Molecular Imaging Probes,” Kee, H. L.; Nothdurft, R.; Muthiah, C.; Diers, J. R.; Fan, D.; Ptaszek, M.; Bocian, D. F.; Lindsey, J. S.; Culver, J. P.; Holten, D. Photochem. Photobiol. 2008, 84, 1061–1072. DOI: 10.1111/j.1751-1097.2008.00409.x
254. “Chlorin-Bacteriochlorin Energy-transfer Dyads as Prototypes for Near-infrared Molecular Imaging Probes: Controlling Charge-transfer and Fluorescence Properties in Polar Media,” Kee, H. L.; Diers, J. R.; Ptaszek, M.; Muthiah, C.; Fan, D.; Lindsey, J. S.; Bocian, D. F.; Holten, D. Photochem. Photobiol. 2009, 85, 909–920. DOI: 10.1111/j.1751-1097.2008.00532.x
257. “Fast and Robust Route to Hydroporphyrin–Chalcones with Extended Red or Near-Infrared Absorption,” Ruzié, C.; Krayer, M.; Lindsey, J. S. Org. Lett. 2009, 11, 1761–1764. DOI: 10.1021/ol900277m
265. “Expanded Scope of Synthetic Bacteriochlorins via Improved Acid Catalysis Conditions and Diverse Dihydrodipyrrin-Acetals,” Krayer, M.; Ptaszek, M.; Kim, H.-J.; Meneely, K. R.; Fan, D.; Secor, K.; Lindsey, J. S. J. Org. Chem. 2010, 75, 1016–1039. (Selected as featured article) DOI: 10.1021/jo9025572
268. “In Vitro Photodynamic Therapy and Quantitative Structure-Activity Relationship Studies with Stable Synthetic Near-Infrared-Absorbing Bacteriochlorin Photosensitizers,” Huang, Y.-Y.; Mroz, P.; Zhiyentayev, T.; Balasubramanian, T.; Ruzié, C.; Krayer, M.; Fan, D.; Borbas, K. E.; Yang, E.; Kee, H. L.; Kirmaier, C.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S.; Hamblin, M. R. J. Med. Chem. 2010, 53, 4018–4027. DOI: 10.1021/jm901908s
269. “Stable Synthetic Cationic Bacteriochlorins as Selective Antimicrobial Photosensitizers,” Huang, L.; Huang, Y.-Y.; Mroz, P.; Tegos, G. P.; Zhiyentayev, T.; Sharma, S. K.; Lu, Z.; Balasubramanian, T.; Krayer, M.; Ruzié, C.; Yang, E.; Kee, H. L.; Kirmaier, C.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S.; Hamblin, M. R. Antimicrob. Agents Chemother. 2010, 54, 3834–3841. DOI: 10.1128/AAC.00125-10
277. “De Novo Synthesis and Photophysical Characterization of Annulated Bacteriochlorins. Mimicking and Extending the Properties of Bacteriochlorophylls,” Krayer, M.; Yang, E.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2011, 35, 587–601. DOI: 10.1039/C0NJ00771D
278. “Tapping the Near-Infrared Spectral Region with Bacteriochlorin Arrays,” Lindsey, J. S.; Mass, O.; Chen, C.-Y. New J. Chem. 2011, 35, 511–516. DOI: 10.1039/C0NJ00977F
279. “Faile Synthesis of a B,D-Tetradehydrocorrin and Rearrangement to Bacteriochlorins,” Aravindu, K.; Krayer, M.; Kim, H.-J.; Lindsey, J. S. New J. Chem. 2011, 35, 1376–1384. DOI: 10.1039/C1NJ20027E
280. “Synthesis and Photochemical Characterization of Stable Indium Bacteriochlorins,” Krayer, M.; Yang, E.; Kim, H.-J.; Kee, H. L.; Deans, R. M.; Sluder, C. E.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Inorg. Chem. 2011, 50, 4607–4618. DOI: 10.1021/ic200325d
284. "Photophysical Properties and Electronic Structure of Stable, Tunable Synthetic Bacteriochlorins: Extending the Features of Native Photosynthetic Pigments," Yang, E.; Kirmaier, C.; Krayer, M.; Taniguchi, M.; Kim, H.-J.; Diers, J. R.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2011, 115, 10801–10816. DOI: 10.1021/jp205258s
287. "A trans-AB-Bacteriochlorin Building Block," Mass, O.; Lindsey, J. S. J. Org. Chem. 2011, 76, 9478–9487. DOI: 10.1021/jo201967k
294. “Synthesis and Physicochemical Properties of Metallobacteriochlorins,” Chen, C.-Y.; Sun, E.; Fan, D.; Taniguchi, M.; McDowell, B. E.; Yang, E.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Inorg. Chem. 2012, 51, 9443–9464. DOI: 10.1021/ic301262k
295. “Synthesis and Evaluation of Cationic Bacteriochlorin Amphiphiles with Effective in vitro Photodynamic Activity Against Cancer Cells at Low Nanomolar Concentration,” Sharma, S.; Krayer, M.; Sperandio, F. F.; Huang, L.; Huang, Y.-Y.; Holten, D.; Lindsey, J. S.; Hamblin, M. R. J. Porphyrins Phthalocyanines 2013, 17, 73–85. DOI: 10.1142/S108842461250126X
296. “Stable Synthetic Bacteriochlorins for Photodynamic Therapy: Role of Dicyano Peripheral Groups, Central Metal Substitution (2H, Zn, Pd), and Cremophor EL Delivery,” Huang, Y.-Y.; Balasubramanian, T.; Yang, E.; Diers, J. R.; Bocian, D. F.; Lindsey, J. S.; Holten, D.; Hamblin, M. R. ChemMedChem 2012, 7, 2155–2167. DOI: 10.1002/cmdc.201200351
298. “Synthesis and Characterization of Lipophilic, Near-Infrared Absorbing Metallobacteriochlorins,” Sun, E.; Chen, C.-Y.; Lindsey, J. S. Chem. J. Chin. Univ. 2013, 34, 776–781. DOI: 10.7503/cjcu20120865
299. “Molecular Electronic Tuning of Photosensitizers to Enhance Photodynamic Therapy: Synthetic Dicyanobacteriochlorins as a Case Study,” Yang, E.; Diers, J. R.; Huang, Y.-Y.; Hamblin, M. R.; Lindsey, J. S.; Bocian, D. F.; Holten, D. Photochem. Photobiol. 2013, 89, 605–618. DOI: 10.1111/php.12021
302. "Photophysical Properties and Electronic Structure of Bacteriochlorin–Chalcones with Extended Near-Infrared Absorption," Yang, E.; Ruzié, C.; Krayer, M.; Diers, J. R.; Niedzwiedzki, D. M.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. Photochem. Photobiol. 2013, 89, 586–604. DOI: 10.1111/php.12053
303. "Palette of Lipophilic Bioconjugatable Bacteriochlorins for Construction of Biohybrid Light-Harvesting Architectures," Reddy, K. R.; Jiang, J.; Krayer, M.; Harris, M. A.; Springer, J. W.; Yang, E.; Jiao, J.; Niedzwiedzki, D. M.; Pandithavidana, D.; Parkes-Loach, P. S.; Kirmaier, C.; Loach, P. A.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Chem. Sci. 2013, 4, 2036–2053. DOI: 10.1039/C3SC22317E
304. "Synthetic Bacteriochlorins with Integral Spiro-piperidine Motifs," Reddy, K. R.; Lubian, E.; Pavan, M. P.; Kim, H.-J.; Yang, E.; Holten, D.; Lindsey, J. S. New J. Chem. 2013, 37, 1157–1173. DOI: 10.1039/C3NJ41161C
307. "Amphiphilic Chlorins and Bacteriochlorins in Micellar Environments. Molecular Design, de novo Synthesis, and Photophysical Properties," Aravindu, K.; Mass, O.; Vairaprakash, P.; Springer, J. W.; Yang, E.; Niedzwiedzki, D. M.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Chem. Sci. 2013, 4, 3459–3477. DOI: 10.1039/C3SC51335A
308. "Distinct Photophysical and Electronic Characteristics of Strongly Coupled Dyads Containing a Perylene Accessory Pigment and a Porphyrin, Chlorin, or Bacteriochlorin," Wang, J.; Yang, E.; Diers, J. R.; Niedzwiedzki, D. M.; Kirmaier, C.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2013, 117, 9288–9304. DOI: 10.1021/jp405004d
312. "Hydrophilic Tetracarboxy Bacteriochlorins for Photonics Applications," Jiang, J.; Vairaprakash, P.; Reddy, K. R.; Sahin, T.; Pavan, M. P.; Lubian, E.; Lindsey, J. S. Org. Biomol. Chem. 2014, 12, 86–103. DOI: 10.1039/C3OB41791C
313. "Synthesis of 24 Bacteriochlorin Isotopologues, Each Containing a Symmetrical Pair of 13C or 15N Atoms in the Inner Core of the Macrocycle," Chen, C.-Y.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2014, 79,1001–1016. DOI: 10.1021/jo402488n
315. "Probing Electronic Communication for Efficient Light-Harvesting Functionality: Dyads Containing a Common Perylene and a Porphyrin, Chlorin, or Bacteriochlorin," Yang, E.; Wang, J.; Diers, J. R.; Niedzwiedzki, D. M.; Kirmaier, C.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2014, 118, 1630–1647. DOI: 10.1021/jp411629m
319. "Amphiphilic, Hydrophilic, or Hydrophobic Synthetic Bacteriochlorins in Biohybrid Light-Harvesting Architectures. Consideration of Molecular Designs," Jiang, J.; Reddy, K. R.; Pavan, M. P.; Lubian, E.; Harris, M. A.; Jiao, J.; Kirmaier, C.; Parkes-Loach, P. S.; Loach, P. A.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Photosyn. Res. 2014, 122, 187–202. DOI: 10.1007/s11120-014-0021-9
320. "NMR Spectral Properties of 16 Synthetic Bacteriochlorins with Site-Specific 13C or 15N Substitution," Chen, C.-Y.; Taniguchi, M.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2014, 18, 433–456. (Cover art for the issue containing paper 320) DOI: 10.1142/S1088424614500199
321. "Stable Synthetic Mono-Substituted Cationic Bacteriochlorins Mediate Selective Broad-Spectrum Photoinactivation of Drug-Resistant Pathogens at Nanomolar Concentrations," Huang, L.; Krayer, M.; Roubil, J. G. S.; Huang, Y.-Y.; Holten, D.; Lindsey, J. S.; Hamblin, M. R. J. Photochem. Photobiol. B: Biol. 2014, 141, 119–127. DOI: 10.1016/j.jphotobiol.2014.09.016
322. "Vibronic Characteristics and Spin-Density Distributions in Bacteriochlorins as Revealed by Spectroscopic Studies of 16 Isotopologues. Implications for Energy- and Electron-Transfer in Natural Photosynthesis and Artificial Solar-Energy Conversion," Diers, J. R.; Tang, Q.; Hondros, C. J.; Chen, C.-Y.; Holten, D.; Lindsey, J. S.; Bocian, D. F. J. Phys. Chem. B 2014, 118, 7520–7532. DOI: 10.1021/jp504286w
324. "Polarity-Tunable and Wavelength-Tunable Bacteriochlorins Bearing a Single Carboxylic Acid or NHS Ester. Use in a Protein Bioconjugation Model System," Jiang, J.; Chen, C.-Y.; Zhang, N.; Vairaprakash, P.; Lindsey, J. S. New J. Chem. 2015, 39, 403–419. DOI: 10.1039/C4NJ01340A
328. "Hydrophilic Bioconjugatable trans-AB-Porphyrins and Peptide Conjugates," Sahin, T.; Vairaprakash, P.; Borbas, K. E.; Balasubramanian, T.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2015, 19, 663–678. DOI: 10.1142/S1088424615500121
330. "Extending the Short and Long Wavelength Limits of Bacteriochlorin Near-Infrared Absorption via Dioxo- and Bisimide-Functionalization," Vairaprakash, P.; Yang, E.; Sahin, T.; Taniguchi, M.; Krayer, M.; Diers, J. R.; Wang, A.; Niedzwiedzki, D. M.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. B 2015, 119, 4382–4395. DOI: 10.1021/jp512818g
331. "Near-infrared tunable bacteriochlorins equipped for bioorthogonal labeling," Jiang, J.; Taniguchi, M.; Lindsey, J. S. New J. Chem. 2015, 39, 4534–4550. DOI: 10.1039/C5NJ00209E
333. "Elaboration of an Unexplored Substitution Site in Synthetic Bacteriochlorins," Zhang, N.; Reddy, K. R.; Jiang, J.; Taniguchi, M.; Sommer, R. D.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2015, 19, 887–902. DOI: 10.1142/S1088424615500534
334. "Synthetic Bacteriochlorins Bearing Polar Motifs (Carboxylate, Phosphonate, Ammonium and a Short PEG). Water-Solubilization, Bioconjugation, and Photophysical Properties," Jiang, J.; Yang, E.; Reddy, K. R.; Niedzwiedzki, D. M.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2015, 39, 5694–5714. DOI: 10.1039/C5NJ00759C
337. "Integration of Cyanine, Merocyanine, and Styryl Dye Motifs with Synthetic Bacteriochlorins," Yang, E.; Zhang, N.; Krayer, M.; Taniguchi, M.; Diers, J. R.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. Photochem. Photobiol. 2016, 92, 111–125. DOI: 10.1111/php.12547
341. "Synthesis and Photophysical Characteristics of 2,3,12,13-Tetraalkylbacteriochlorins," Zhang, S.; Kim, H.-J.; Tang, Q.; Yang, E.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2016, 40, 5942–5956. DOI: 10.1039/C6NJ00517A
345. "Bioconjugatable, PEGylated Hydroporphyrins for Photochemistry and Photomedicine. Narrow-Band, Near-Infrared-Emitting Bacteriochlorins," Zhang, N.; Jiang, J.; Liu, M.; Taniguchi, M.; Mandal, A. K.; Evans-Storms, R. B.; Pitner, J. B.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2016, 40, 7750–7767. DOI: 10.1039/C6NJ01155A
347. "Panchromatic chromophore–tetrapyrrole light-harvesting arrays constructed from bodipy, perylene, terrylene, porphyrin, chlorin, and bacteriochlorin building blocks," Hu, G.; Liu, R.; Alexy, E. J.; Mandal, A. K.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2016, 40, 8032–8052. DOI: 10.1039/C6NJ01782G
349. "Photophysical comparisons of PEGylated porphyrins, chlorins and bacteriochlorins in water," Mandal, A. K.; Sahin, T.; Liu, M.; Lindsey, J. S.; Bocian, D. F.; Holten, D. New J. Chem. 2016, 40, 9648–9656. DOI: 10.1039/C6NJ02091G
352. “Northern–Southern Route to Synthetic Bacteriochlorins,” Liu, Y.; Lindsey, J. S. J. Org. Chem. 2016, 81, 11882–11897. DOI: 10.1021/acs.joc.6b02334
355. “Synthesis, photophysics and electronic structure of oxobacteriochlorins,” Liu, M.; Chen, C.-Y.; Hood, D.; Taniguchi, M.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2017, 41, 3732–3744. DOI: 10.1039/C6NJ04135C
356. “Photophysical Characterization of the Naturally Occurring Dioxobacteriochlorin Tolyporphin A and Synthetic Oxobacteriochlorin Analogues, ” Hood, D.; Niedzwiedzki, D. M.; Zhang, R.; Zhang, Y.; Dai, J.; Miller, E. S.; Bocian, D. F.; Williams, P. G.; Lindsey, J. S.; Holten, D. Photochem. Photobiol. 2017, 93, 1204–1215. DOI: 10.1111/php.12781
357. “Synthesis and photophysical characterization of bacteriochlorins equipped with integral swallowtail substituents,” Liu, Y.; Allu, S.; Reddy, M. N.; Hood, D.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2017, 41, 4360–4376. DOI: 10.1039/C7NJ00499K
358. “Synthesis and Spectral Properties of meso-Arylbacteriochlorins, Including Insights into Essential Motifs of Hydrodipyrrin Precursors,” Reddy, M. N.; Zhang, S.; Kim, H.-J.; Mass, O.; Taniguchi, M.; Lindsey, J. S. Molecules 2017, 22, 634 (32 pages). DOI: 10.3390/molecules22040634
361. “Synthesis of tailored hydrodipyrrins and examination in directed routes to bacteriochlorins and tetradehydrocorrins,” Zhang, S.; Reddy, M. N.; Mass, O.; Kim, H.-J.; Hu, G.; Lindsey, J. S. New J. Chem. 2017, 41, 11170–11189. DOI: 10.1039/C7NJ01892D
375. “Unusual Stability of a Bacteriochlorin Electrocatalyst Under Reductive Conditions. A Case Study on CO2 Conversion to CO,” Jiang, J.; Matula, A. J.; Swierk, J. R.; Romano, N.; Wu, Y.; Batista, V.; Crabtree, R. H.; Lindsey, J. S.; Wang, H.; Brudvig, G. W. ACS Catalysis 2018, 8, 10131–10136. DOI: 10.1021/acscatal.8b02991
380. “Annulated bacteriochlorins for near-infrared photophysical studies,” Fujita, H.; Jing, H.; Krayer, M.; Allu, S.; Veeraraghavaiah, G.; Wu, Z.; Jiang, J.; Diers, J. R.; Magdaong, N. C. M.; Mandal, A. K.; Roy, A.; Niedwiedzki, D. M.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2019, 43, 7209–7232.381. DOI: 10.1039/C9NJ01113G
385. “Bacteriochlorin–bis(spermine) conjugate affords efficient photodynamic inactivation of bacteria,” Ballatore, M. B.; Milanesio, M. E.; Fujita, H.; Lindsey, J. S.; Durantini, E. N. J. Biophotonics 2020, 13, e201960061. DOI: 10.1002/jbio.201960061
419. “Synthesis of bacteriochlorins bearing diverse β-substituents,” Jing, H.; Wang, P.; Chen, B.; Jiang, J.; Vairaprakash, P.; Liu, S.; Rong, J.; Chen, C.-Y.; Nalaoh, P.; Lindsey, J. S. New J. Chem. 2022, 46, 5534–5555. DOI: 10.1039/D1NJ05852E
420. “Meso bromination and derivatization of synthetic bacteriochlorins,” Jing, H.; Liu, S.; Jiang, J.; Tran, V.-P.; Rong, J.; Wang, P.; Lindsey, J. S. New J. Chem. 2022, 46, 5556–5572. DOI: 10.1039/D1NJ05853C
421. “De Novo Synthesis of Bacteriochlorins Bearing Four Trideuteriomethyl Groups,” Jing, H.; Tang, Q.; Bocian, D. F.; Lindsey, J. S. Organics 2022, 3, 22–37. DOI: 10.3390/org3010002
425. “Dihydrooxazine Byproduct of a McMurry-Melton Reaction En Route to a Synthetic Bacteriochlorin,” Tran, V.-P.; Matsumoto, N.; Nalaoh, P.; Jing, H.; Chen, C.-Y.; Lindsey, J. S. Organics 2022, 3, 262–274. DOI: 10.3390/org3030019
427. “Probing the Effects of Electronic-Vibrational Resonance on the Rate of Excited-State Energy Transfer in Bacteriochlorin Dyads,” Magdaong, N. C. M.; Jing, H.; Diers, J. R.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. Lett. 2022, 13, 7906–7910. DOI: 10.1021/acs.jpclett.2c02154
429. “Balancing Panchromatic Absorption and Multistep Charge Separation in a Compact Molecular Architecture,” Roy, A.; Magdaong, N. C. M.; Jing, H.; Rong, J.; Diers, J. R.; Kang, H. S.; Mandal, A. K.; Niedzwiedzki, D. M.; Taniguchi, M.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. A 2022, 126, 9353–9365. DOI: 10.1021/acs.jpca.2c06040
431. “Dyads with Tunable Near-Infrared Donor–Acceptor Excited-State Energy Gaps: Molecular Design and Förster Analysis for Ultrafast Energy Transfer,” Jing, H.; Magdaong, N. C. M.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Phys. Chem. Chem. Phys. 2023, 25, 1827–1847. DOI: 10.1039/d2cp04689j
433. “Investigation of a Bacteriochlorin-containing Pentad for Panchromatic Light-Harvesting and Charge Separation,” Jing, H.; Magdaong, N. C. M.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Phys. Chem. Chem. Phys. 2023, 25, 1781–1798. DOI: 10.1039/D2CP05400K
440. “Bacteriochlorin Syntheses – Status, Problems, and Exploration,” Tran, V.-P.; Wang, P.; Matsumoto, N.; Liu, S.; Jing, H.; Nalaoh, P.; Chau Nguyen, K.; Taniguchi, M.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2023, 27, 1502–1551. DOI: 10.1142/S1088424623501171
451. “Extension of Nature’s NIR-I Chromophore into the NIR-II Region,” Siwawannapong, K.; Diers, J. R.; Magdaong, N. C. M.; Nalaoh, P.; Kirmaier, C.; Lindsey, J. S.; Holten, D.; Bocian, D. F. Phys. Chem. Chem. Phys. 2024, 26, 14228–14243. DOI: 10.1039/D4CP00779D
(Bacterio)chlorophylls and Phyllobilins
354. “Construction of the Bacteriochlorin Macrocycle with Concomitant Nazarov Cyclization To Form the Annulated Isocyclic Ring: Analogues of Bacteriochlorophyll a,” Zhang, S.; Lindsey, J. S. J. Org. Chem. 2017, 82, 2489–2504. DOI: 10.1021/acs.joc.6b02878
371. “Total synthesis campaigns toward chlorophylls and related natural hydroporphyrins – diverse macrocycles, unrealized opportunities,” Liu, Y.; Zhang, S.; Lindsey, J. S. Nat. Prod. Rep. 2018, 35, 879–901. DOI: 10.1039/C8NP00020D
383. “Synthesis of the Ring C Pyrrole of Native Chlorophylls and Bacteriochlorophylls,” Wang, P.; Nguyen, K. C.; Lindsey, J. S. J. Org. Chem. 2019, 84, 11286–11293. DOI: 10.1021/acs.joc.9b01650
387. "Use of the Nascent Isocyclic Ring to Anchor Assembly of the Full Skeleton of Model Chlorophylls,” Wang, P.; Lu, F.; Lindsey, J. S. J. Org. Chem. 2020, 85, 702–715. DOI: 10.1021/acs.joc.9b02770
392. "Asymmetric Synthesis of a Bacteriochlorophyll Model Compound Containing trans-Dialkyl Substituents in Ring D," Chau Nguyen, K.; Wang, P.; Sommer, R. D.; Lindsey, J. S. J. Org. Chem. 2020, 85, 6605–6619. DOI: 10.1021/acs.joc.0c00608
393. "Riley Oxidation of Heterocyclic Intermediates on Paths to Hydroporphyrins – A Review," Wang, P.; Lindsey, J. S. Molecules 2020, 25, 1858. DOI: 10.3390/molecules25081858
401. "Study of conditions for streamlined assembly of a model bacteriochlorophyll from two dihydrodipyrrin halves," Chau Nguyen, K.; Wang, P.; Lindsey, J. S. New J. Chem. 2021, 45, 569–581. DOI: 10.1039/D0NJ04855K
413. “Synthesis of model bacteriochlorophylls containing substituents of native rings A, C and E,” Chung, D. T. M.; Tran, P. V.; Chau Nguyen, K.; Wang, P.; Lindsey, J. S. New J. Chem. 2021, 45, 13302–13316. DOI: 10.1039/D1NJ02469H
414. “Synthesis of AD-Dihydrodipyrrins Equipped with Latent Substituents of Native Chlorophylls and Bacteriochlorophylls,” Wang, P.; Lindsey, J. S. J. Org. Chem. 2021, 86, 11794–11811. DOI: 10.1021/acs.joc.1c01239
437. “Four Routes to 3-(3-Methoxy-1,3-dioxopropyl)pyrrole, a Core Motif of Rings C and E in Photosynthetic Tetrapyrroles,” Chau Nguyen, K.; Nguyen Tran, A. T.; Wang, P.; Zhang, S.; Wu, Z.; Taniguchi, M.; Lindsey, J. S. Molecules 2023, 28, 1323. DOI: 10.3390/molecules28031323
440. “Bacteriochlorin Syntheses – Status, Problems, and Exploration,” Tran, V.-P.; Wang, P.; Matsumoto, N.; Liu, S.; Jing, H.; Nalaoh, P.; Chau Nguyen, K.; Taniguchi, M.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2023, 27, 1502–1551. DOI: 10.1142/S1088424623501171
441. "Synthesis of model Southern rim structures of photosynthetic tetrapyrroles and phyllobilins," Nguyen Tran, A. T.; Wu, Z.; Chung, D. T. M.; Nalaoh, P.; Lindsey, J. S. New J. Chem. 2023, 47, 13626–13637. DOI: 10.1039/D3NJ02515B
442. “Synthesis of a BC-Dihydrodipyrrin Building Block of Bacteriochlorophyll a,” Chau Nguyen, K.; Lindsey, J. S. J. Org. Chem. 2023, 88, 11205–11216. DOI: 10.1021/acs.joc.3c01216
445. “Synthesis of Chiral Hexynones for Use as Precursors to Native Photosynthetic Hydroporphyrins,” Chau Nguyen, K.; Chung, D. T. M.; Nalaoh, P.; Lindsey, J. S. New J. Chem. 2024, 48, 2097–2117. DOI: 10.1039/D3NJ03900E
450. “On the Pelletier and Caventou (1817, 1818) Papers on Chlorophyll and Beyond,” Govindjee, G.; Stirbet, A.; Lindsey, J. S.; Scheer, H. Photosynth. Res. 2024, 160, 55–60. DOI: 10.1007/s11120-024-01081-x
453. “Synthesis of A Model Phyllobilin Bearing an Optical Marker,” Nguyen Tran, A. T.; Wang, P.; Zhang, S.; Jovanovic, M.; Siewert, B.; Moser, S.; Lindsey, J. S. New J. Chem. 2024, 48, 12091–12101. DOI:10.1039/D4NJ01533A
Bioconjugate Chemistry
197. “Bioconjugatable Porphyrins Bearing a Compact Swallowtail Motif for Water Solubility,” Borbas, K. E.; Mroz, P.; Hamblin, M. R.; Lindsey, J. S. Bioconjugate Chem. 2006, 17, 638–653. DOI: 10.1021/bc050337w
219. “Regioselective 15-Bromination and Functionalization of a Stable Synthetic Bacteriochlorin,” Fan, D.; Taniguchi, M.; Lindsey, J. S. J. Org. Chem. 2007, 72, 5350–5357. DOI: 10.1021/jo070785s
233. “A Compact Water-Soluble Porphyrin Bearing An Iodoacetamido Bioconjugatable Site,” Borbas, K. E.; Kee, H. L.; Holten, D.; Lindsey, J. S. Org. Biomol. Chem. 2008, 6, 187–194. DOI: 10.1039/B715072E
246. “Design and Synthesis of Water-Soluble Bioconjugatable trans-AB-Porphyrins,” Muresan, A. Z.; Lindsey, J. S. Tetrahedron 2008, 64, 11440–11448. DOI: 10.1016/j.tet.2008.08.096
303. "Palette of Lipophilic Bioconjugatable Bacteriochlorins for Construction of Biohybrid Light-Harvesting Architectures," Reddy, K. R.; Jiang, J.; Krayer, M.; Harris, M. A.; Springer, J. W.; Yang, E.; Jiao, J.; Niedzwiedzki, D. M.; Pandithavidana, D.; Parkes-Loach, P. S.; Kirmaier, C.; Loach, P. A.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Chem. Sci. 2013, 4, 2036–2053. DOI: 10.1039/C3SC22317E
307. "Amphiphilic Chlorins and Bacteriochlorins in Micellar Environments. Molecular Design, de novo Synthesis, and Photophysical Properties," Aravindu, K.; Mass, O.; Vairaprakash, P.; Springer, J. W.; Yang, E.; Niedzwiedzki, D. M.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Chem. Sci. 2013, 4, 3459–3477. DOI: 10.1039/C3SC51335A
312. "Hydrophilic Tetracarboxy Bacteriochlorins for Photonics Applications," Jiang, J.; Vairaprakash, P.; Reddy, K. R.; Sahin, T.; Pavan, M. P.; Lubian, E.; Lindsey, J. S. Org. Biomol. Chem. 2014, 12, 86–103. DOI: 10.1039/C3OB41791C
324. "Polarity-Tunable and Wavelength-Tunable Bacteriochlorins Bearing a Single Carboxylic Acid or NHS Ester. Use in a Protein Bioconjugation Model System," Jiang, J.; Chen, C.-Y.; Zhang, N.; Vairaprakash, P.; Lindsey, J. S. New J. Chem. 2015, 39, 403–419. DOI: 10.1039/C4NJ01340A
328. "Hydrophilic Bioconjugatable trans-AB-Porphyrins and Peptide Conjugates," Sahin, T.; Vairaprakash, P.; Borbas, K. E.; Balasubramanian, T.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2015, 19, 663–678. DOI: 10.1142/S1088424615500121
331. "Near-infrared tunable bacteriochlorins equipped for bioorthogonal labeling," Jiang, J.; Taniguchi, M.; Lindsey, J. S. New J. Chem. 2015, 39, 4534–4550. DOI: 10.1039/C5NJ00209E
334. "Synthetic Bacteriochlorins Bearing Polar Motifs (Carboxylate, Phosphonate, Ammonium and a Short PEG). Water-Solubilization, Bioconjugation, and Photophysical Properties," Jiang, J.; Yang, E.; Reddy, K. R.; Niedzwiedzki, D. M.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2015, 39, 5694–5714. DOI: 10.1039/C5NJ00759C
344. "Bioconjugatable, PEGylated Hydroporphyrins for Photochemistry and Photomedicine. Narrow-Band, Red-Emitting Chlorins," Liu, M.; Chen, C.-Y.; Mandal, A. K.; Chandrashaker, V.; Evans-Storms, R. B.; Pitner, J. B.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2016, 40, 7721–7740. DOI: 10.1039/C6NJ01154C
345. "Bioconjugatable, PEGylated Hydroporphyrins for Photochemistry and Photomedicine. Narrow-Band, Near-Infrared-Emitting Bacteriochlorins," Zhang, N.; Jiang, J.; Liu, M.; Taniguchi, M.; Mandal, A. K.; Evans-Storms, R. B.; Pitner, J. B.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2016, 40, 7750–7767. DOI: 10.1039/C6NJ01155A
384. “Bioconjugatable synthetic chlorins rendered water-soluble with three PEG-12 groups via click chemistry,” Matsumoto, N.; Taniguchi, M.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2020, 24, 362–378. DOI: 10.1142/S1088424619501219
396. "Peptide-based scaffolds for in vivo immobilization and enzyme attachment in therapeutic applications," Lee, D. L.; Chin, H.-L. M.; Knudsen, C. G.; Mayers, G. L.; Rose, D. S.; Skogstrom, R. K.; Palzkill, T.; Fujita, H.; Zhang, Y.; Wu, Z.; Lindsey, J. S. Proc. SPIE 2020, 11477, 1147708. DOI: 10.1117/12.2566895
412. “Design, Synthesis, and Utility of Defined Molecular Scaffolds,” Sato, D.; Wu, Z.; Fujita, H.; Lindsey, J. S. Organics 2021, 2, 161–273. DOI: 10.3390/org2030013
447. “Chlorin–Dextran Conjugates for Brightness Enhancement in Water,” Liu, S.; Lindsey, J. S.; Taniguchi, M. Proc. SPIE 2024, 12862, 128620A. DOI: 10.1117/12.3000409
Biomedical Science
Diagnostics
59. “Analysis of sugar phosphates and related compounds using capillary zone electrophoresis with indirect UV detection,” Ciringh, Y.; Lindsey, J. S. J. Chromatogr. A 1998, 816, 251–259. DOI: 10.1016/S0021-9673(98)00488-9
370. “Red and near-infrared fluorophores inspired by chlorophylls: consideration of practical brightness in multicolor flow cytometry and biomedical sciences,” Taniguchi, M.; Hu, G.; Liu, R.; Du, H.; Lindsey, J. S. Proc. SPIE 2018, 10508, 1050806. DOI: 10.1117/12.2302709
446. “Rapid Screening of Dyes for Self-Aggregation, Adsorption, and Metabolic Integrity – Quantitative Metrics as a Prelude to Biological Studies,” Liu, Q.; Taniguchi, M.; Goel, S.; Lindsey, J. S. Dyes Pigments 2024, 223, 111914. DOI: 10.1016/j.dyepig.2023.111914
In situ chemistry
386. “Enzymatically triggered chromogenic cross-linking agents under physiological conditions,” Fujita, H.; Dou, J.; Matsumoto, N.; Wu, Z.; Lindsey, J. S. New J. Chem. 2020, 44, 719–743. DOI: 10.1039/C9NJ04126E
388. "Chromogenic agents built around a multifunctional double-triazine framework for enzymatically triggered cross-linking under physiological conditions," Fujita, H.; Zhang, Y.; Wu, Z.; Lindsey, J. S. New J. Chem. 2020, 44, 3856–3867. DOI: 10.1039/C9NJ06187H
396. "Peptide-based scaffolds for in vivo immobilization and enzyme attachment in therapeutic applications," Lee, D. L.; Chin, H.-L. M.; Knudsen, C. G.; Mayers, G. L.; Rose, D. S.; Skogstrom, R. K.; Palzkill, T.; Fujita, H.; Zhang, Y.; Wu, Z.; Lindsey, J. S. Proc. SPIE 2020, 11477, 1147708. DOI: 10.1117/12.2566895
397. "Engineering of an archaeal phosphodiesterase to trigger aggregation-induced emission (AIE) of synthetic substrates," Zhang, Y.; Wu, Z.; Takashima, I.; Nguyen, K.-U.; Matsumoto, N.; Lindsey, J. S. New J. Chem. 2020, 44, 14266–14277. DOI: 10.1039/D0NJ03208E
432. “Tailoring the AIE Chromogen 2-(2-Hydroxyphenyl)benzothiazole for Use in Enzyme-Triggered Molecular Brachytherapy,” Wu, Z.; Dou, J.; Nguyen, K.-U.; Eppley, J. C.; Siwawannapong, K.; Zhang, Y.; Lindsey, J. S. Molecules 2022, 27, 8682. DOI: 10.3390/molecules27248682
436. “Indoxyl-Glucosides Bearing Tethers for Enzymatically Triggered Cross-linking,” Sato, D.; Wu, Z.; Dou, J.; Son, J.; Lindsey, J. S. New J. Chem. 2023, 47, 8223–8242. DOI: 10.1039/d2nj06267d
439. “Tethered Indoxyl-Glucuronides for Enzymatically Triggered Cross-linking” Son, J.; Wu, Z.; Dou, J.; Fujita, H.; Cao, P.-L. D.; Liu, Q.; Lindsey, J. S. Molecules 2023, 28, 4143. DOI: 10.3390/molecules28104143
455. “Molecular Design for Sub-Micromolar Enzyme-Instructed Self-Assembly (EISA),” Liu, Q.; Ntim, T.; Wu, Z.; Houson, H. A.; Lapi, S. E.; Lindsey, J. S. New J. Chem. 2024, 48, 11233–11242. DOI: 10.1039/D4NJ01798F
Photodynamic therapy (PDT)
245. “Photophysical Characterization of Imidazolium-Substituted Pd(II), In(III), and Zn(II) Porphyrins as Photosensitizers for Photodynamic Therapy,” Kee, H. L.; Bhaumik, J.; Diers, J. R.; Mroz, P.; Hamblin, M. R.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Photochem. Photobiol. A: Chem. 2008, 200, 346–355. DOI: 10.1016/j.jphotochem.2008.08.006
252. “Tandem Dispersion and Killing of Bacteria from a Biofilm,” Rogers, S. A.; Krayer, M.; Lindsey, J. S.; Melander, C. Org. Biomol. Chem. 2009, 7, 603–606. DOI: 10.1039/B817923A
255. “Imidazole Metalloporphyrins as Photosensitizers for Photodynamic Therapy: Role of Molecular Charge, Central Metal and Hydroxyl Radical Production,” Mroz, P.; Bhaumik, J.; Dogutan, D. K.; Aly, Z.; Kamal, Z.; Khalid, L.; Kee, H. L.; Bocian, D. F.; Holten, D.; Lindsey, J. S.; Hamblin, M. R. Cancer Lett. 2009, 282, 63–76. DOI: 10.1016/j.canlet.2009.02.054
266. “Stable Synthetic Bacteriochlorins Overcome the Resistance of Melanoma to Photodynamic Therapy,” Mroz, P.; Huang, Y.-Y.; Szokalska, A.; Zhiyentayev, T.; Janjua, S.; Nifli, A.-P.; Sherwood, M. E.; Ruzié, C.; Borbas, K. E.; Fan, D.; Krayer, M.; Balasubramanian, T.; Yang, E.; Kee, H. L.; Kirmaier, C.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S.; Hamblin, M. R. FASEB J. 2010, 24, 3160–3170. DOI: 10.1096/fj.09-152587
268. “In Vitro Photodynamic Therapy and Quantitative Structure-Activity Relationship Studies with Stable Synthetic Near-Infrared-Absorbing Bacteriochlorin Photosensitizers,” Huang, Y.-Y.; Mroz, P.; Zhiyentayev, T.; Balasubramanian, T.; Ruzié, C.; Krayer, M.; Fan, D.; Borbas, K. E.; Yang, E.; Kee, H. L.; Kirmaier, C.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S.; Hamblin, M. R. J. Med. Chem. 2010, 53, 4018–4027. DOI: 10.1021/jm901908s
269. “Stable Synthetic Cationic Bacteriochlorins as Selective Antimicrobial Photosensitizers,” Huang, L.; Huang, Y.-Y.; Mroz, P.; Tegos, G. P.; Zhiyentayev, T.; Sharma, S. K.; Lu, Z.; Balasubramanian, T.; Krayer, M.; Ruzié, C.; Yang, E.; Kee, H. L.; Kirmaier, C.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S.; Hamblin, M. R. Antimicrob. Agents Chemother. 2010, 54, 3834–3841. DOI: 10.1128/AAC.00125-10
295. “Synthesis and Evaluation of Cationic Bacteriochlorin Amphiphiles with Effective in vitro Photodynamic Activity Against Cancer Cells at Low Nanomolar Concentration,” Sharma, S.; Krayer, M.; Sperandio, F. F.; Huang, L.; Huang, Y.-Y.; Holten, D.; Lindsey, J. S.; Hamblin, M. R. J. Porphyrins Phthalocyanines 2013, 17, 73–85. DOI: 10.1142/S108842461250126X
296. “Stable Synthetic Bacteriochlorins for Photodynamic Therapy: Role of Dicyano Peripheral Groups, Central Metal Substitution (2H, Zn, Pd), and Cremophor EL Delivery,” Huang, Y.-Y.; Balasubramanian, T.; Yang, E.; Diers, J. R.; Bocian, D. F.; Lindsey, J. S.; Holten, D.; Hamblin, M. R. ChemMedChem 2012, 7, 2155–2167. DOI: 10.1002/cmdc.201200351
299. “Molecular Electronic Tuning of Photosensitizers to Enhance Photodynamic Therapy: Synthetic Dicyanobacteriochlorins as a Case Study,” Yang, E.; Diers, J. R.; Huang, Y.-Y.; Hamblin, M. R.; Lindsey, J. S.; Bocian, D. F.; Holten, D. Photochem. Photobiol. 2013, 89, 605–618. DOI: 10.1111/php.12021
321. "Stable Synthetic Mono-Substituted Cationic Bacteriochlorins Mediate Selective Broad-Spectrum Photoinactivation of Drug-Resistant Pathogens at Nanomolar Concentrations," Huang, L.; Krayer, M.; Roubil, J. G. S.; Huang, Y.-Y.; Holten, D.; Lindsey, J. S.; Hamblin, M. R. J. Photochem. Photobiol. B: Biol. 2014, 141, 119–127. DOI: 10.1016/j.jphotobiol.2014.09.016
385. “Bacteriochlorin–bis(spermine) conjugate affords efficient photodynamic inactivation of bacteria,” Ballatore, M. B.; Milanesio, M. E.; Fujita, H.; Lindsey, J. S.; Durantini, E. N. J. Biophotonics 2020, 13, e201960061. DOI: 10.1002/jbio.201960061
Therapeutics studies
223. “Design and synthesis of manganese porphyrins with tailored lipophilicity: Investigation of redox properties and superoxide dismutase activity,” Lahaye, D.; Muthukumaran, K.; Gryko, D.; Hung, C.-H.; Spasojevic, I.; Batinic-Haberle, I.; Lindsey, J. S. Bioorg. Med. Chem. 2007, 15, 7066–7086. DOI: 10.1016/j.bmc.2007.07.015
232. “Soluble Precipitable Porphyrins for Use in Targeted Molecular Brachytherapy,” Yao, Z.; Borbas, K. E.; Lindsey, J. S. New J. Chem. 2008, 32, 436–451. DOI: 10.1039/B714127K
424. “Simple Dipyrrin Analogues of Prodigiosin for Use as Colistin Adjuvants,” Siwawannapong, K.; Nemeth, A. M.; Melander, R. J.; Rong, J.; Davis, J. R.; Taniguchi, M.; Carpenter, M. E.; Lindsey, J. S.; Melander, C. ChemMedChem 2022, e202200286. DOI: 10.1002/cmdc.202200286
448. “Customizable Porphyrin Platform Enables Folate Receptor PET Imaging Using Copper-64,” Houson, H. A.; Wu, Z.; Cao, P.-L. D.; Lindsey, J. S.; Lapi, S. E. Mol. Pharm. 2024, 21, 2441–2455. DOI: 10.1021/acs.molpharmaceut.4c00015
Chlorins
89. “Rational Synthesis of Meso-Substituted Chlorin Building Blocks,” Strachan, J.-P.; O’Shea, D. F.; Balasubramanian, T.; Lindsey, J. S. J. Org. Chem. 2000, 65, 3160–3172. Additions and Corrections: Strachan, J.-P.; O’Shea, D. F.; Balasubramanian, T.; Lindsey, J. S. J. Org. Chem. 2001, 66, 642. DOI: 10.1021/jo991942t
101. “Rational Synthesis of β-Substituted Chlorin Building Blocks,” Balasubramanian, T.; Strachan, J.-P.; Boyle, P. D.; Lindsey, J. S. J. Org. Chem. 2000, 65, 7919–7929. DOI: 10.1021/jo000913b
120. “Synthesis of meso-Substituted Chlorins via Tetrahydrobilene-a Intermediates,” Taniguchi, M.; Ra, D.; Mo, G.; Balasubramanian, T.; Lindsey, J. S. J. Org. Chem. 2001, 66, 7342–7354. DOI: 10.1021/jo0104835
137. “Synthesis and Electronic Properties of Regioisomerically Pure Oxochlorins,” Taniguchi, M.; Kim, H.-J.; Ra, D.; Schwartz, J. K.; Kirmaier, C.; Hindin, E.; Diers, J. R.; Prathapan, S.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2002, 67, 7329–7342. DOI: 10.1021/jo025843i
141. “Synthesis and Excited-State Photodynamics of A Perylene-Monoimide-Oxochlorin Dyad. A Light-Harvesting Array,” Muthukumaran, K.; Loewe, R. S.; Kirmaier, C.; Hinden, E.; Schwartz, J. K.; Sazanovich, I. V.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Phys. Chem. B 2003, 107, 3431–3442. DOI: 10.1021/jp026941a
142. “Synthesis and Excited-State Photodynamics of Perylene-Bis(imide)-Oxochlorin Dyads. A Charge-Separation Motif,” Kirmaier, C.; Hinden, E.; Schwartz, J. K.; Sazanovich, I. V.; Diers, J. R.; Muthukumaran, K.; Taniguchi, M.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2003, 107, 3443–3454. DOI: 10.1021/jp0269423
161. “Photophysical Properties of Phenylethyne-Linked Porphyrin and Oxochlorin Dyads,” Hindin, E.; Kirmaier, C.; Diers, J. R.; Tomizaki, K.-Y.; Taniguchi, M.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. B 2004, 108, 8190–8200. DOI: 10.1021/jp037614l
179. “Introduction of a Third Meso Substituent into Diaryl Chlorins and Oxochlorins,” Taniguchi, M.; Kim, M. N.; Ra, D.; Lindsey, J. S. J. Org. Chem. 2005, 70, 275–285. DOI: 10.1021/jo048440m
202. “Synthetic Chlorins Bearing Auxochromes at the 3- and 13-Positions,” Laha, J. K.; Muthiah, C.; Taniguchi, M.; McDowell, B. E.; Ptaszek, M.; Lindsey, J. S. J. Org. Chem. 2006, 71, 4092–4102. Additions and Corrections: Laha, J. K.; Muthiah, C.; Taniguchi, M.; McDowell, B. E.; Ptaszek, M.; Lindsey, J. S. J. Org. Chem. 2009, 74, 5122. DOI: 10.1021/jo060208o
205. “A New Route for Installing the Isocyclic Ring in Chlorins Yielding 13¹-Oxophorbines,” Laha, J. K.; Muthiah, C.; Taniguchi, M.; Lindsey, J. S. J. Org. Chem. 2006, 71, 7049–7052. DOI: 10.1021/jo0608265
211. “Sparsely Substituted Chlorins as Core Constructs in Chlorophyll Analogue Chemistry. Part 1: Synthesis,” Ptaszek, M.; McDowell, B. E.; Taniguchi, M.; Kim, H.-J.; Lindsey, J. S. Tetrahedron 2007, 63, 3826–3839. DOI: 10.1016/j.tet.2007.02.038
212. “Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 2: Derivatization,” Taniguchi, M.; Ptaszek, M.; McDowell, B. E.; Lindsey, J. S. Tetrahedron 2007, 63, 3840–3849. DOI: 10.1016/j.tet.2007.02.076
213. “Sparsely substituted chlorins as core constructs in chlorophyll analogue chemistry. Part 3: Spectral and structural properties,” Taniguchi, M.; Ptaszek, M.; McDowell, B. E.; Boyle, P. D.; Lindsey, J. S. Tetrahedron 2007, 63, 3850–3863. DOI: 10.1016/j.tet.2007.02.040
214. “Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 1: Synthesis, Vibrational Properties and Excited-state Decay Characteristics,” Kee, H. L.; Kirmaier, C.; Tang, Q.; Diers, J. R.; Muthiah, C.; Taniguchi, M.; Laha, J. K.; Ptaszek, M.; Lindsey, J. S.; Bocian, D. F.; Holten, D. Photochem. Photobiol. 2007, 83, 1110–1124. DOI: 10.1111/j.1751-1097.2007.00150.x
215. “Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 2: Redox Properties, Optical Spectra and Electronic Structure,” Kee, H. L.; Kirmaier, C.; Tang, Q.; Diers, J. R.; Muthiah, C.; Taniguchi, M.; Laha, J. K.; Ptaszek, M.; Lindsey, J. S.; Bocian, D. F.; Holten, D. Photochem. Photobiol. 2007, 83, 1125–1143. DOI: 10.1111/j.1751-1097.2007.00151.x
220. “Rational Routes to Formyl-Substituted Chlorins,” Muthiah, C.; Bhaumik, J.; Lindsey, J. S. J. Org. Chem. 2007, 72, 5839–5842. DOI: 10.1021/jo0707885
226. “Synthesis and Photophysical Characterization of Porphyrin, Chlorin, and Bacteriochlorin Molecules Bearing Tethers for Surface Attachment,” Muthiah, C.; Taniguchi, M.; Kim, H.-J.; Schmidt, I.; Kee, H. L.; Holten, D.; Bocian, D. F.; Lindsey, J. S. Photochem. Photobiol. 2007, 83, 1513–1528. DOI: 10.1111/j.1751-1097.2007.00195.x
227. “Examination of Tethered Porphyrin, Chlorin, and Bacteriochlorin Molecules in Mesoporous Metal-Oxide Solar Cells,” Stromberg, J. R.; Marton, A.; Kee, H. L.; Kirmaier, C.; Diers, J. R.; Muthiah, C.; Taniguchi, M.; Lindsey, J. S.; Bocian, D. F.; Meyer, G. J.; Holten, D. J. Phys. Chem. C 2007, 15464–15478. DOI: 10.1021/jp0749928
229. “Two Complementary Routes to 7-Substituted Chlorins. Partial Mimics of Chlorophyll b,” Muthiah, C.; Ptaszek, M.; Nguyen, T. M.; Flack, K. M.; Lindsey, J. S. J. Org. Chem. 2007, 72, 7736–7749. DOI: 10.1021/jo701500d
230. “Synthesis and Structural Properties of Porphyrin Analogues of Bacteriochlorophyll c,” Ptaszek, M.; Yao, Z.; Savithri, D.; Boyle, P. D.; Lindsey, J. S. Tetrahedron 2007, 63, 12629–12638. DOI: 10.1016/j.tet.2007.10.023
234. “Synthesis and Excited-State Photodynamics of a Chlorin–Bacteriochlorin Dyad – Through-Space Versus Through-Bond Energy Transfer In Tetrapyrrole Arrays,” Muthiah, C.; Kee, H. L.; Diers, J. R.; Fan, D.; Ptaszek, M.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Photochem. Photobiol. 2008, 84, 786–801. DOI: 10.1111/j.1751-1097.2007.00258.x
236. “Design, Synthesis, and Photophysical Properties of Water-Soluble Chlorins,” Borbas, K. E.; Chandrashaker, V.; Muthiah, C.; Kee, H. L.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2008, 73, 3145–3158. DOI: 10.1021/jo7026728
243. “Examination of Chlorin–Bacteriochlorin Energy-Transfer Dyads as Prototypes for Near-Infrared Molecular Imaging Probes,” Kee, H. L.; Nothdurft, R.; Muthiah, C.; Diers, J. R.; Fan, D.; Ptaszek, M.; Bocian, D. F.; Lindsey, J. S.; Culver, J. P.; Holten, D. Photochem. Photobiol. 2008, 84, 1061–1072. DOI: 10.1111/j.1751-1097.2008.00409.x
247. “Regiospecifically α-¹³C-Labeled Porphyrins for Studies of Ground-State Hole Transfer in Multiporphyrin Arrays,” Muresan, A. Z.; Thamyongkit, P.; Diers, J. R.; Holten, D.; Lindsey, J. S.; Bocian, D. F. J. Org. Chem. 2008, 73, 6947–6959. (Selected as featured article) DOI: 10.1021/jo8012836
254. “Chlorin-Bacteriochlorin Energy-transfer Dyads as Prototypes for Near-infrared Molecular Imaging Probes: Controlling Charge-transfer and Fluorescence Properties in Polar Media,” Kee, H. L.; Diers, J. R.; Ptaszek, M.; Muthiah, C.; Fan, D.; Lindsey, J. S.; Bocian, D. F.; Holten, D. Photochem. Photobiol. 2009, 85, 909–920. DOI: 10.1111/j.1751-1097.2008.00532.x
257. “Fast and Robust Route to Hydroporphyrin–Chalcones with Extended Red or Near-Infrared Absorption,” Ruzié, C.; Krayer, M.; Lindsey, J. S. Org. Lett. 2009, 11, 1761–1764. DOI: 10.1021/ol900277m
258. “Regioselective Bromination Tactics in the De Novo Synthesis of Chlorophyll b Analogues,” Muthiah, C.; Lahaye, D.; Taniguchi, M.; Ptaszek, M.; Lindsey, J. S. J. Org. Chem. 2009, 74, 3237–3247. (Selected as featured article and as cover art) DOI: 10.1021/jo9002954
260. “Synthesis and Photochemical Properties of 12-Substituted versus 13-Substituted Chlorins,” Mass, O.; Ptaszek, M.; Taniguchi, M.; Diers, J. R.; Kee, H. L.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2009, 74, 5276–5289. DOI: 10.1021/jo900706x
267. “De Novo Synthesis of Long-Wavelength Absorbing Chlorin-13,15-Dicarboximides,” Ptaszek, M.; Lahaye, D.; Krayer, M.; Muthiah, C.; Lindsey, J. S. J. Org. Chem. 2010, 75, 1659–1673. DOI: 10.1021/jo902649d
285. "De Novo Synthesis and Properties of Analogues of the Self-Assembling Chlorosomal Bacteriochlorophylls," Mass, O.; Pandithavidana, D. R.; Ptaszek, M.; Santiago, K.; Springer, J. W.; Jiao, J.; Tang, Q.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2011, 35, 2671–2690. DOI: 10.1039/C1NJ20611G
288. “Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 3: The Distinctive Impact of Auxochromes at the 7- versus 3-Positions,” Springer, J. W.; Faries, K. M.; Diers, J. R.; Muthiah, C.; Mass, O.; Kee, H. L.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. Photochem. Photobiol. 2012, 88, 651–674. DOI: 10.1111/j.1751-1097.2012.01083.x
308. "Distinct Photophysical and Electronic Characteristics of Strongly Coupled Dyads Containing a Perylene Accessory Pigment and a Porphyrin, Chlorin, or Bacteriochlorin," Wang, J.; Yang, E.; Diers, J. R.; Niedzwiedzki, D. M.; Kirmaier, C.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2013, 117, 9288–9304. DOI: 10.1021/jp405004d
311. "Synthesis and Photophysical Properties of Chlorins Bearing 0–4 Distinct meso-Substituents," Aravindu, K.; Kim, H.-J.; Taniguchi, M.; Dilbeck, P. L.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Photochem. Photobiol. Sci. 2013, 12, 2089–2109. DOI: 10.1039/C3PP50240F
315. "Probing Electronic Communication for Efficient Light-Harvesting Functionality: Dyads Containing a Common Perylene and a Porphyrin, Chlorin, or Bacteriochlorin," Yang, E.; Wang, J.; Diers, J. R.; Niedzwiedzki, D. M.; Kirmaier, C.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2014, 118, 1630–1647. DOI: 10.1021/jp411629m
317. "Regioselective β-Pyrrolic Bromination of Hydrodipyrrin–Dialkylboron Complexes Facilitates Access to Synthetic Models for Chlorophyll f," Liu, M.; Ptaszek, M.; Mass, O.; Minkler, D. F.; Sommer, R. D.; Bhaumik, J.; Lindsey, J. S. New J. Chem. 2014, 38, 1717–1730. DOI: 10.1039/C3NJ01508D
318. "Photophysical Properties and Electronic Structure of Retinylidene–Chlorin–Chalcones and Analogues," Springer, J. W.; Taniguchi, M.; Krayer, M.; Ruzié, C.; Diers, J. R.; Niedzwiedzki, D. M.; Bocian, D. F.; Lindsey, J. S.; Holten, D. Photochem. Photobiol. Sci. 2014, 13, 634–650. DOI: 10.1039/c3pp50421b
326. "Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 4: How Formyl Group Location Dictates the Spectral Properties of Chlorophylls b, d and f," Yuen, J.; Harris, M. A.; Liu, M.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Lindsey, J. S.; Holten, D. Photochem. Photobiol. 2015, 91, 331–342. DOI: 10.1111/php.12401
327. "Progress Towards Synthetic Chlorins with Graded Polarity, Conjugatable Substituents, and Wavelength Tunability," Ra, D.; Gauger, K. A.; Muthukumaran, K.; Balasubramanian, T.; Chandrashaker, V.; Taniguchi, M.; Yu, Z.; Talley, D. C.; Ehudin, M.; Ptaszek, M.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2015, 19, 547–572. (Cover art for the issue containing paper 327) DOI: 10.1142/S1088424615500042
329. "Photophysical Properties and Electronic Structure of Chlorin–Imides: Bridging the Gap Between Chlorins and Bacteriochlorins," Faries, K. M.; Diers, J. R.; Springer, J. W.; Yang, E.; Ptaszek, M.; Lahaye, D.; Krayer, M.; Taniguchi, M.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. B 2015, 7503–7515. DOI: 10.1021/jp511257w
332. "De Novo Synthesis of Gem-Dialkyl Chlorophyll Analogues for Probing and Emulating our Green World," Lindsey, J. S. Chem. Rev. 2015, 115, 6534–6620. DOI: 10.1021/acs.chemrev.5b00065
339. "Synthetic Chlorins, Possible Surrogates for Chlorophylls, Prepared by Derivatization of Porphyrins," Taniguchi, M.; Lindsey, J. S. Chem. Rev. 2017, 117, 344–535. Special issue on Light-Harvesting, 01/25/2017 DOI: 10.1021/acs.chemrev.5b00696
359. “Hydrogen Evolution Catalysis by a Sparsely Substituted Cobalt Chlorin,” Maher, A. G.; Passard, G.; Dogutan, D. K.; Halbach, R. L.; Anderson, B. L.; Gagliardi, C. J.; Taniguchi, M.; Lindsey, J. S.; Nocera, D. G. ACS Catalysis 2017, 7, 3597–3606. DOI: 10.1021/acscatal.7b00969
368. “Chlorophyll-Inspired Red-Region Fluorophores: Building Block Syntheses and Studies in Aqueous Media,” Liu, R.; Liu, M.; Hood, D.; Chen, C. -Y.; MacNevin, C. J.; Holten, D.; Lindsey, J. S. Molecules 2018, 23, 130 (30 pages). Special issue: Advanced Functional Dyes. DOI: 10.3390/molecules23010130
370. “Red and near-infrared fluorophores inspired by chlorophylls: consideration of practical brightness in multicolor flow cytometry and biomedical sciences,” Taniguchi, M.; Hu, G.; Liu, R.; Du, H.; Lindsey, J. S. Proc. SPIE 2018, 10508, 1050806. DOI: 10.1117/12.2302709
372. “Synthesis of arrays containing porphyrin, chlorin, and perylene-imide constituents for panchromatic light-harvesting and charge separation,” Hu, G.; Kang, H. S.; Mandal, A. K.; Roy, A.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. RSC Adv. 2018, 8, 23854–23874. DOI: 10.1039/C8RA04052D
384. “Bioconjugatable synthetic chlorins rendered water-soluble with three PEG-12 groups via click chemistry,” Matsumoto, N.; Taniguchi, M.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2020, 24, 362–378. DOI: 10.1142/S1088424619501219
418. “Beyond Green with Synthetic Chlorophylls – Connecting Structural Features with Spectral Properties,” Taniguchi, M.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Photochem. Photobiol. C 2022, 52, 100513. DOI: 10.1016/j.jphotochemrev.2022.100513
422. “Chasing the green echiuran worm Bonellia in tidal pools of Okinawa,” Taniguchi, M.; Taniguchi, M.; Zhang, R.; Goto, R.; Lindsey, J. S. Proc. SPIE 2022, 11979, 119790A. DOI: 10.1117/12.2608722
447. “Chlorin–Dextran Conjugates for Brightness Enhancement in Water,” Liu, S.; Lindsey, J. S.; Taniguchi, M. Proc. SPIE 2024, 12862, 128620A. DOI: 10.1117/12.3000409
458. “Synthesis of (Oxo)chlorin Dimers Chelated with Thallium(III),” Aravindu, K.; Taniguchi, M.; Bocian, D. F.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2024, 28, 527–535. DOI: 10.1142/S1088424624500524
Corrin analogues
184. “De Novo Synthesis of Stable Tetrahydroporphyrinic Macrocycles: Bacteriochlorins and a Tetradehydrocorrin,” Kim, H.-J.; Lindsey, J. S. J. Org. Chem. 2005, 70, 5475–5486. DOI: 10.1021/jo050467y
279. “Faile Synthesis of a B,D-Tetradehydrocorrin and Rearrangement to Bacteriochlorins,” Aravindu, K.; Krayer, M.; Kim, H.-J.; Lindsey, J. S. New J. Chem. 2011, 35, 1376–1384. DOI: 10.1039/C1NJ20027E
309. "Serendipitous Synthetic Entrée to Tetradehydro Analogues of Cobalamins," Deans, R. M.; Mass, O.; Diers, J. R.; Bocian, D. F.; Lindsey, J. S. New J. Chem. 2013, 37, 3964–3975. DOI: 10.1039/C3NJ00574G
361. “Synthesis of tailored hydrodipyrrins and examination in directed routes to bacteriochlorins and tetradehydrocorrins,” Zhang, S.; Reddy, M. N.; Mass, O.; Kim, H.-J.; Hu, G.; Lindsey, J. S. New J. Chem. 2017, 41, 11170–11189. DOI: 10.1039/C7NJ01892D
423. “Synthesis and Properties of Metalated Tetradehydrocorrins,” Sun, R.; Liu, M.; Wang, P.; Qin, Y.; Schnedermann, C.; Maher, A. G.; Zheng, S.-L.; Liu, S.; Chen, B.; Zhang, S.; Dogutan, D. K.; Lindsey, J. S.; Nocera, D. G. Inorg. Chem. 2022, 12308–12317. DOI: 10.1021/acs.inorgchem.2c01642
Dipyrromethanes / Dipyrrins
1-flask dipyrromethane synthesis
35. “One-flask synthesis of meso-substituted dipyrromethanes and their application in the synthesis of trans-substituted porphyrin building blocks,” Lee, C.-H.; Lindsey, J. S. Tetrahedron 1994, 50, 11427–11440. DOI: 10.1016/S0040-4020(01)89282-6
65. “Refined Synthesis of 5-Substituted Dipyrromethanes,” Littler, B. J.; Miller, M. A.; Hung, C.-H.; Wagner, R. W.; O’Shea, D. F.; Boyle, P. D.; Lindsey, J. S. J. Org. Chem. 1999, 64, 1391–1396. DOI: 10.1021/jo982015+
88. “Rational Synthesis of meso-Substituted Porphyrins Bearing One Nitrogen Heterocyclic Group,” Gryko, D.; Lindsey, J. S. J. Org. Chem. 2000, 65, 2249–2252. DOI: 10.1021/jo9918100
150. “A Scalable Synthesis of Meso-Substituted Dipyrromethanes,” Laha, J. K.; Dhanalekshmi, S.; Taniguchi, M.; Ambroise, A.; Lindsey, J. S. Org. Process Res. Dev. 2003, 7, 799–812. DOI: 10.1021/op034083q
BODIPYs
37. “A molecular photonic wire,” Wagner, R. W.; Lindsey, J. S. J. Am. Chem. Soc. 1994, 116, 9759–9760. DOI: 10.1021/ja00100a055
42. “Boron-dipyrromethene dyes for incorporation in synthetic multi-pigment light-harvesting arrays,” Wagner, R. W.; Lindsey, J. S. Pure Appl. Chem. 1996, 68, 1373–1380. Corrigendum: Wagner, R. W.; Lindsey, J. S. Pure Appl. Chem. 1998, 70 (8), p. i. DOI: 10.1351/pac199668071373
43. “Molecular Optoelectronic Gates,” Wagner, R. W.; Lindsey, J. S.; Seth, J.; Palaniappan, V.; Bocian, D. F. J. Am. Chem. Soc. 1996, 118, 3996–3997. DOI: 10.1021/ja9602657
62. “Design, Synthesis, and Photodynamics of Light-Harvesting Arrays Comprised of a Porphyrin and One, Two or Eight Boron-Dipyrrin Accessory Pigments,” Li, F.; Yang, S. I.; Ciringh, Y.; Seth, J.; Martin III, C. H.; Singh, D. L.; Kim, D.; Birge, R. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Am. Chem. Soc. 1998, 120, 10001–10017. DOI: 10.1021/ja9812047
103. “Design and Synthesis of Porphyrin-Based Optoelectronic Gates,” Ambroise, A.; Wagner, R. W.; Rao, P. D.; Riggs, J. A.; Hascoat, P.; Diers, J. R.; Seth, J.; Lammi, R. K.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Chem. Mater. 2001, 13, 1023–1034. DOI: 10.1021/cm000773m
130. “Weakly Coupled Molecular Photonic Wires: Synthesis and Excited-State Energy-Transfer Dynamics,” Ambroise, A.; Kirmaier, C.; Wagner, R. W.; Loewe, R. S.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2002, 67, 3811–3826. DOI: 10.1021/jo025561i
187. “Structural Control of the Photodynamics of Boron-Dipyrrin Complexes,” Kee, H. L.; Kirmaier, C.; Yu, L.; Thamyongkit, P.; Youngblood, W. J.; Calder, M. E.; Ramos, L.; Noll, B. C.; Bocian, D. F.; Scheidt, W. R.; Birge, R. R.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2005, 109, 20433–20443. DOI: 10.1021/jp0525078
347. "Panchromatic chromophore–tetrapyrrole light-harvesting arrays constructed from bodipy, perylene, terrylene, porphyrin, chlorin, and bacteriochlorin building blocks," Hu, G.; Liu, R.; Alexy, E. J.; Mandal, A. K.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2016, 40, 8032–8052. DOI: 10.1039/C6NJ01782G
366. “Tailoring Panchromatic Absorption and Excited-State Dynamics of Tetrapyrrole–Chromophore (Bodipy, Rylene) Arrays – The Interplay of Orbital Mixing and Configuration Interaction,” Mandal, A. K.; Diers, J. R.; Niedzwiedzki, D. M.; Hu, G.; Liu, R.; Alexy, E. J.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Am. Chem. Soc. 2017, 139, 17547–17564. DOI: 10.1021/jacs.7b09548
381. “New molecular design for blue BODIPYs,” Wu, Z.; Fujita, H.; Magdaong, N. C. M.; Diers, J. R.; Hood, D.; Allu, S.; Niedzwiedzki, D. M.; Kirmaier, C.; Bocian, D. F. Holten, D.; Lindsey, J. S. New J. Chem. 2019, 43, 7233–7242. DOI: 10.1039/C9NJ01114E
Dipyrrins synthesis
42. “Boron-dipyrromethene dyes for incorporation in synthetic multi-pigment light-harvesting arrays,” Wagner, R. W.; Lindsey, J. S. Pure Appl. Chem. 1996, 68, 1373–1380. Corrigendum: Wagner, R. W.; Lindsey, J. S. Pure Appl. Chem. 1998, 70 (8), p. i. DOI: 10.1351/pac199668071373
148. “Excited-State Energy-Transfer Dynamics in Self-Assembled Triads Composed of Two Porphyrins and an Intervening Bis(dipyrrinato)metal Complex,” Yu, L.; Muthukumaran, K.; Sazanovich, I. V.; Kirmaier, C.; Hindin, E.; Diers, J. R.; Boyle, P. D.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Inorg. Chem. 2003, 42, 6629–6647. DOI: 10.1021/ic034559m
158. “Structural Control of the Excited-State Dynamics of Bis(dipyrrinato)zinc Complexes: Self-Assembling Chromophores for Light-Harvesting Architectures,” Sazanovich, I. V.; Kirmaier, C.; Hindin, E.; Yu, L.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Am. Chem. Soc. 2004, 126, 2664–2665. DOI: 10.1021/ja038763k
180. “PhotochemCAD 2. A Refined Program with Accompanying Spectral Databases for Photochemical Calculations,” Dixon, J. M.; Taniguchi, M.; Lindsey, J. S. Photochem. Photobiol. 2005, 81, 212–213. DOI: 10.1111/j.1751-1097.2005.tb01544.x
194. “Synthesis of dipyrrin-containing architectures,” Muthukumaran, K.; Zaidi, S. H. H.; Yu, L.; Thamyongkit, P.; Calder, M. E.; Sharada, D. S.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2005, 9, 745–759. DOI: 10.1142/S108842460500085X
201. “Synthesis of 1-Formyldipyrromethanes,” Ptaszek, M.; McDowell, B. E.; Lindsey, J. S. J. Org. Chem. 2006, 71, 4328–4331. DOI: 10.1021/jo060119b
202. “Synthetic Chlorins Bearing Auxochromes at the 3- and 13-Positions,” Laha, J. K.; Muthiah, C.; Taniguchi, M.; McDowell, B. E.; Ptaszek, M.; Lindsey, J. S. J. Org. Chem. 2006, 71, 4092–4102. Additions and Corrections: Laha, J. K.; Muthiah, C.; Taniguchi, M.; McDowell, B. E.; Ptaszek, M.; Lindsey, J. S. J. Org. Chem. 2009, 74, 5122. DOI: 10.1021/jo060208o
382. “Self-assembly with fluorescence readout in a free base dipyrrin–polymer triggered by metal ion binding in aqueous solution,” Liu, R.; Vairaprakash, P.; Lindsey, J. S. New J. Chem. 2019, 43, 9711–9724. DOI: 10.1039/C9NJ01787A
394. "Crystal Structure of 1,9-Dibromo-5-phenyldipyrrin, Tetrapyrrole Synthesis Derivative and Free Base Ligand of BODIPY Building Blocks," O’Shea, D. F.; Sommer, R. D.; Taniguchi, M.; Lindsey, J. S. X-Ray Struct. Anal. Online 2020, 36, 21–22. DOI: 10.2116/xraystruct.36.21
424. “Simple Dipyrrin Analogues of Prodigiosin for Use as Colistin Adjuvants,” Siwawannapong, K.; Nemeth, A. M.; Melander, R. J.; Rong, J.; Davis, J. R.; Taniguchi, M.; Carpenter, M. E.; Lindsey, J. S.; Melander, C. ChemMedChem 2022, e202200286. DOI: 10.1002/cmdc.202200286
stepwise dipyrromethane synthesis
76. “Synthesis of β-substituted porphyrin building blocks and conversion to diphenylethyne-linked porphyrin dimers,” Balasubramanian, T.; Lindsey, J. S. Tetrahedron 1999, 55, 6771–6784. DOI: 10.1016/S0040-4020(99)00339-7
81. “Rational Synthesis of Trans-Substituted Porphyrin Building Blocks Containing One Sulfur or Oxygen Atom in Place of Nitrogen at a Designated Site,” Cho, W.-S.; Kim, H.-J.; Littler, B. J.; Miller, M. A.; Lee, C.-H.; Lindsey, J. S. J. Org. Chem. 1999, 64, 7890–7901. DOI: 10.1021/jo9909305
87. “Efficient Synthesis of Monoacyl Dipyrromethanes and Their Use in the Preparation of Sterically Unhindered trans-Porphyrins,” Rao, P. D.; Littler, B. J.; Geier, G. R., III; Lindsey, J. S. J. Org. Chem. 2000, 65, 1084–1092. DOI: 10.1021/jo9915473
89. “Rational Synthesis of Meso-Substituted Chlorin Building Blocks,” Strachan, J.-P.; O’Shea, D. F.; Balasubramanian, T.; Lindsey, J. S. J. Org. Chem. 2000, 65, 3160–3172. Additions and Corrections: Strachan, J.-P.; O’Shea, D. F.; Balasubramanian, T.; Lindsey, J. S. J. Org. Chem. 2001, 66, 642. DOI: 10.1021/jo991942t
160. “A Tin-Complexation Strategy for Use with Diverse Acylation Methods in the Preparation of 1,9-Diacyldipyrromethanes,” Tamaru, S.-I.; Yu, L.; Youngblood, W. J.; Muthukumaran, K.; Taniguchi, M.; Lindsey, J. S. J. Org. Chem. 2004, 69, 765–777. DOI: 10.1021/jo035622s
173. “Boron-Complexation Strategy for Use with 1-Acyldipyrromethanes,” Muthukumaran, K.; Ptaszek, M.; Noll, B.; Scheidt, W. R.; Lindsey, J. S. J. Org. Chem. 2004, 69, 5354–5364. DOI: 10.1021/jo0492620
178. “9-Acylation of 1-Acyldipyrromethanes Containing a Dialkylboron Mask for the α-Acylpyrrole Motif,” Zaidi, S. H. H.; Muthukumaran, K.; Tamaru, S.-I.; Lindsey, J. S. J. Org. Chem. 2004, 69, 8356–8365. DOI: 10.1021/jo048587d
188. “Imine-substituted dipyrromethanes in the synthesis of porphyrins bearing one or two meso substituents,” Taniguchi, M.; Balakumar, A.; Fan, D.; McDowell, B. E.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2005, 9, 554–574. DOI: 10.1142/S1088424605000678
193. “Alkylthio Unit as an α-Pyrrole Protecting Group for use in Dipyrromethane Synthesis,” Thamyongkit, P.; Bhise, A. D.; Taniguchi, M.; Lindsey, J. S. J. Org. Chem. 2006, 71, 903–910. DOI: 10.1021/jo051806q
201. “Synthesis of 1-Formyldipyrromethanes,” Ptaszek, M.; McDowell, B. E.; Lindsey, J. S. J. Org. Chem. 2006, 71, 4328–4331. DOI: 10.1021/jo060119b
202. “Synthetic Chlorins Bearing Auxochromes at the 3- and 13-Positions,” Laha, J. K.; Muthiah, C.; Taniguchi, M.; McDowell, B. E.; Ptaszek, M.; Lindsey, J. S. J. Org. Chem. 2006, 71, 4092–4102. Additions and Corrections: Laha, J. K.; Muthiah, C.; Taniguchi, M.; McDowell, B. E.; Ptaszek, M.; Lindsey, J. S. J. Org. Chem. 2009, 74, 5122. DOI: 10.1021/jo060208o
208. “Masked Imidazolyl-Dipyrromethanes in the Synthesis of Imidazole-Substituted Porphyrins,” Bhaumik, J.; Yao, Z.; Borbas, K. E.; Taniguchi, M.; Lindsey, J. S. J. Org. Chem. 2006, 71, 8807–8817. DOI: 10.1021/jo061461r
260. “Synthesis and Photochemical Properties of 12-Substituted versus 13-Substituted Chlorins,” Mass, O.; Ptaszek, M.; Taniguchi, M.; Diers, J. R.; Kee, H. L.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2009, 74, 5276–5289. DOI: 10.1021/jo900706x
Doctoral Research
1. “Increased Yield of a Desired Isomer by Equilibria Displacement on Binding to Silica Gel, Applied to meso-Tetrakis(o-aminophenyl)Porphyrin,” Lindsey, J. S. J. Org. Chem. 1980, 45, 5215. DOI: 10.1021/jo01313a042
2. “Synthesis of a Cofacial Porphyrin-Quinone via Entropically Favored Macropolycyclization,” Lindsey, J. S.; Mauzerall, D. C. J. Am. Chem. Soc. 1982, 104, 4498–4500. DOI: 10.1021/ja00380a037
3. “Excited State Porphyrin-Quinone Interactions at 10 Å Separation,” Lindsey, J. S.; Mauzerall, D. C.; Linschitz, H. J. Am. Chem. Soc. 1983, 105, 6528–6529. DOI: 10.1021/ja00359a049
6. “Synthesis of Tetraphenylporphyrins Under Very Mild Conditions,” Lindsey, J. S.; Hsu, H. C.; Schreiman, I. C. Tetrahedron Lett. 1986, 27, 4969–4970. DOI: 10.1016/S0040-4039(00)85109-6
11. “Photophysics of a Cofacial Zinc Porphyrin-Quinone Cage Molecule and Related Compounds: Fluorescence Properties, Flash Transients, and Electron-Transfer Reactions,” Lindsey, J. S.; Delaney, J. K.; Mauzerall, D. C.; Linschitz, H. J. Am. Chem. Soc. 1988, 110, 3610–3621. DOI: 10.1021/ja00219a041
456. “A Life in Light – In Honor of David Mauzerall on his 95th Birthday,” Lindsey, J. S. Photosynth. Res. 2024, 161, 233–248. DOI: 10.1007/s11120-024-01105-6
Electronic communication between pigments
36. “Investigation of Electronic Communication in Multi-Porphyrin Light-Harvesting Arrays,” Seth, J.; Palaniappan, V.; Johnson, T. E.; Prathapan, S.; Lindsey, J. S.; Bocian, D. F. J. Am. Chem. Soc. 1994, 116, 10578–10592. DOI: 10.1021/ja00102a027
47. “Soluble Synthetic Multiporphyrin Arrays. 3. Static Spectroscopic and Electrochemical Probes of Electronic Communication,” Seth, J.; Palaniappan, V.; Wagner, R. W.; Johnson, T. E.; Lindsey, J. S.; Bocian, D. F. J. Am. Chem. Soc. 1996, 118, 11194–11207. DOI: 10.1021/ja9616138
55. “Effects of Orbital Ordering on Electronic Communication in Multiporphyrin Arrays,” Strachan, J.-P.; Gentemann, S.; Seth, J.; Kalsbeck, W. A.; Lindsey, J. S.; Holten, D.; Bocian, D. F. J. Am. Chem. Soc. 1997, 119, 11191–11201. DOI: 10.1021/ja971678q
57. “Synthesis and Characterization of Tetrachlorodiarylethyne-Linked Porphyrin Dimers. Effects of Linker Architecture on Intradimer Electronic Communication,” Strachan, J.-P.; Gentemann, S.; Seth, J.; Kalsbeck, W. A.; Lindsey, J. S.; Holten, D.; Bocian, D. F. Inorg. Chem. 1998, 37, 1191–1201. DOI: 10.1021/ic970967c
64. “Excited-State Energy Transfer and Ground-State Hole/Electron Hopping in p-Phenylene-Linked Porphyrin Dimers,” Yang, S. I.; Lammi, R. K.; Seth, J.; Riggs, J. A.; Arai, T.; Kim, D.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Phys. Chem. B 1998, 102, 9426–9436. DOI: 10.1021/jp982729o
69. “Interplay of Orbital Tuning and Linker Location in Controlling Electronic Communication in Porphyrin Arrays,” Yang, S. I.; Seth, J.; Balasubramanian, T.; Kim, D.; Lindsey, J. S.; Holten, D.; Bocian, D. F. J. Am. Chem. Soc. 1999, 121, 4008–4018. DOI: 10.1021/ja9842060
79. “Template-Directed Synthesis, Excited-State Photodynamics, and Electronic Communication in a Hexameric Wheel of Porphyrins,” Li, J.; Ambroise, A.; Yang, S. I.; Diers, J. R.; Seth, J.; Wack, C. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Am. Chem. Soc. 1999, 121, 8927–8940. DOI: 10.1021/ja991730d
91. “Structural Control of Photoinduced Energy Transfer Between Adjacent and Distant Sites in Multiporphyrin Arrays,” Lammi, R. K.; Ambroise, A.; Balasubramanian, T.; Wagner, R. W.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Am. Chem. Soc. 2000, 122, 7579–7591. DOI: 10.1021/ja001031x
102. “Mechanisms of Excited-State Energy-Transfer Gating in Linear versus Branched Multiporphyrin Arrays,” Lammi, R. K.; Wagner, R. W.; Ambroise, A.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Phys. Chem. B 2001, 105, 5341–5352. DOI: 10.1021/jp010857y
116. “Quenching of porphyrin excited states by adjacent or distant porphyrin cation radicals in molecular arrays,” Lammi, R. K.; Ambroise, A.; Wagner, R. W.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Chem. Phys. Lett. 2001, 341, 35–44. DOI: 10.1016/S0009-2614(01)00452-3
122. “Synthesis and Properties of Weakly Coupled Dendrimeric Multiporphyrin Light-Harvesting Arrays and Hole-Storage Reservoirs,” del Rosario Benites, M.; Johnson, T. E.; Weghorn, S.; Yu, L.; Rao, P. D.; Diers, J. R.; Yang, S. I.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Mater. Chem. 2002, 12, 65–80. DOI: 10.1039/B105108N
123. “Probing Electronic Communication in Covalently Linked Multiporphyrin Arrays. A Guide to the Rational Design of Molecular Photonic Devices,” Holten, D.; Bocian, D. F.; Lindsey, J. S. Acc. Chem. Res. 2002, 35, 57–69. DOI: 10.1021/ar970264z
126. “Design and synthesis of light-harvesting rods for intrinsic rectification of the migration of excited-state energy and ground-state holes,” Loewe, R. S.; Lammi, R. K.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Mater. Chem. 2002, 12, 1530–1552. DOI: 10.1039/b108168c
217. “Meso-¹³C-Labeled Porphyrins for Studies of Ground-State Hole Transfer in Multiporphyrin Arrays,” Thamyongkit, P.; Muresan, A. Z.; Diers, J. R.; Holten, D.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2007, 72, 5207–5217. DOI: 10.1021/jo070593x
247. “Regiospecifically α-¹³C-Labeled Porphyrins for Studies of Ground-State Hole Transfer in Multiporphyrin Arrays,” Muresan, A. Z.; Thamyongkit, P.; Diers, J. R.; Holten, D.; Lindsey, J. S.; Bocian, D. F. J. Org. Chem. 2008, 73, 6947–6959. (Selected as featured article) DOI: 10.1021/jo8012836
249. “Energy- and Hole-Transfer Dynamics in Oxidized Porphyrin Dyads,” Song, H.-E.; Kirmaier, C.; Diers, J. R.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. B 2009, 113, 54–63. DOI: 10.1021/jp8060637
250. “Determination of Ground-State Hole-Transfer Rates Between Identical Sites in Oxidized Multiporphyrin Arrays Using Time-Resolved Optical Spectroscopy,” Song, H.-E.; Kirmaier, C.; Taniguchi, M.; Diers, J. R.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Am. Chem. Soc. 2008, 130, 15636–15648. DOI: 10.1021/ja805673m
251. “Probing Ground-State Hole Transfer Between Equivalent, Electrochemically Inaccessible States in Multiporphyrin Arrays using Time-Resolved Optical Spectroscopy,” Song, H.-E.; Taniguchi, M.; Kirmaier, C.; Diers, J. R.; Bocian, D. F.; Lindsey, J. S.; Holten, D. Photochem. Photobiol. 2009, 85, 693–704. DOI: 10.1111/j.1751-1097.2008.00471.x
263. “Linker Dependence of Energy and Hole Transfer in Neutral and Oxidized Multiporphyrin Arrays,” Song, H.-E.; Taniguchi, M.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2009, 113, 16483–16493. DOI: 10.1021/jp9072558
273. “Probing the Rate of Hole Transfer in Oxidized Porphyrin Dyads Using Thallium Hyperfine Clocks,” Diers, J. R.; Taniguchi, M.; Holten, D.; Lindsey, J. S.; Bocian, D. F. J. Am. Chem. Soc. 2010, 132, 12121–12132. DOI: 10.1021/ja105082d
297. “Effects of Linker Torsional Constraints on the Rate of Ground-State Hole Transfer in Porphyrin Dyads,” Hondros, C. J.; Aravindu, K.; Diers, J. R.; Holten, D.; Lindsey, J. S.; Bocian, D. F. Inorg. Chem. 2012, 51, 11076–11086. DOI: 10.1021/ic301613k
429. “Balancing Panchromatic Absorption and Multistep Charge Separation in a Compact Molecular Architecture,” Roy, A.; Magdaong, N. C. M.; Jing, H.; Rong, J.; Diers, J. R.; Kang, H. S.; Mandal, A. K.; Niedzwiedzki, D. M.; Taniguchi, M.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. A 2022, 126, 9353–9365. DOI: 10.1021/acs.jpca.2c06040
433. “Investigation of a Bacteriochlorin-containing Pentad for Panchromatic Light-Harvesting and Charge Separation,” Jing, H.; Magdaong, N. C. M.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Phys. Chem. Chem. Phys. 2023, 25, 1781–1798. DOI: 10.1039/D2CP05400K
457. “Synthesis of Porphyrin Triads Chelated with Thallium(III) for Studies of Ground-State Hole/Electron Transfer,” Wang, J.; Taniguchi, M.; Bocian, D. F.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2024, 28, 515–526. DOI: 10.1142/S1088424624500524
458. “Synthesis of (Oxo)chlorin Dimers Chelated with Thallium(III),” Aravindu, K.; Taniguchi, M.; Bocian, D. F.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2024, 28, 527–535. DOI: 10.1142/S1088424624500524
Energy transfer theory, FRET
55. “Effects of Orbital Ordering on Electronic Communication in Multiporphyrin Arrays,” Strachan, J.-P.; Gentemann, S.; Seth, J.; Kalsbeck, W. A.; Lindsey, J. S.; Holten, D.; Bocian, D. F. J. Am. Chem. Soc. 1997, 119, 11191–11201. DOI: 10.1021/ja971678q
56. “Energy-Transfer Modeling for the Rational Design of Multiporphyrin Light-Harvesting Arrays,” Van Patten, P. G.; Shreve, A. P.; Lindsey, J. S.; Donohoe, R. J. J. Phys. Chem. B 1998, 102, 4209–4216. DOI: 10.1021/jp972304m
91. “Structural Control of Photoinduced Energy Transfer Between Adjacent and Distant Sites in Multiporphyrin Arrays,” Lammi, R. K.; Ambroise, A.; Balasubramanian, T.; Wagner, R. W.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Am. Chem. Soc. 2000, 122, 7579–7591. DOI: 10.1021/ja001031x
146. “Comparison of Excited-State Energy Transfer in Arrays of Hydroporphyrins (Chlorins, Oxochlorins) Versus Porphyrins: Rates, Mechanisms, and Design Criteria,” Taniguchi, M.; Ra, D.; Kirmaier, C.; Hindin, E.; Schwartz, J. K.; Diers, J. R.; Knox, R. S.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Am. Chem. Soc. 2003, 125, 13461–13470. DOI: 10.1021/ja035987u
168. “Excited-State Energy Flow in Covalently Linked Multiporphyrin Arrays: The Essential Contribution of Energy Transfer between Nonadjacent Chromophores,” Hindin, E.; Forties, R. A.; Loewe, R. S.; Ambroise, A.; Kirmaier, C.; Bocian, D. F.; Lindsey, J. S.; Holten, D.; Knox, R. S. J. Phys. Chem. B 2004, 108, 12821–12832. DOI: 10.1021/jp047803j
209. “Theoretical Solar-to-Electrical Energy-Conversion Efficiencies of Perylene-Porphyrin Light-Harvesting Arrays,” Hasselman, G. M.; Watson, D. F.; Stromberg, J. S.; Bocian, D. F.; Holten, D.; Lindsey, J. S.; Meyer, G. J. J. Phys. Chem. B 2006, 110, 25430–25440. DOI: 10.1021/jp064547x
234. “Synthesis and Excited-State Photodynamics of a Chlorin–Bacteriochlorin Dyad – Through-Space Versus Through-Bond Energy Transfer In Tetrapyrrole Arrays,” Muthiah, C.; Kee, H. L.; Diers, J. R.; Fan, D.; Ptaszek, M.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Photochem. Photobiol. 2008, 84, 786–801. DOI: 10.1111/j.1751-1097.2007.00258.x
377. “Heuristics from Modeling of Spectral Overlap in Förster Resonance Energy Transfer (FRET),” Qi, Q.; Taniguchi, M.; Lindsey, J. S. J. Chem. Inf. Model. 2019, 59, 652–667. DOI: 10.1021/acs.jcim.8b00753
404. "The fluorescence quantum yield parameter in Förster resonance energy transfer (FRET) – Meaning, misperception, and molecular design," Lindsey, J. S.; Taniguchi, M.; Bocian, D. F.; Holten, D. Chem. Phys. Rev. 2021, 2, 011302. DOI: 10.1063/5.0041132
427. “Probing the Effects of Electronic-Vibrational Resonance on the Rate of Excited-State Energy Transfer in Bacteriochlorin Dyads,” Magdaong, N. C. M.; Jing, H.; Diers, J. R.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. Lett. 2022, 13, 7906–7910.
431. “Dyads with Tunable Near-Infrared Donor–Acceptor Excited-State Energy Gaps: Molecular Design and Förster Analysis for Ultrafast Energy Transfer,” Jing, H.; Magdaong, N. C. M.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Phys. Chem. Chem. Phys. 2023, 25, 1827–1847. DOI: 10.1039/d2cp04689j
Ferrocenes
22. “Self-assembly of molecular devices containing a ferrocene, a porphyrin, and a quinone in a triple macrocyclic architecture,” Wagner, R. W.; Brown, P. A.; Johnson, T. E.; Lindsey, J. S. J. Chem. Soc., Chem. Commun. 1991, 1463–1466. DOI: 10.1039/C39910001463
52. “Investigation of the one-flask synthesis of porphyrins bearing meso-linked straps of variable length, rigidity, and redox activity,” Wagner, R. W.; Johnson, T. E.; Lindsey, J. S. Tetrahedron 1997, 53, 6755–6790. DOI: 10.1016/S0040-4020(97)00327-X
95. “Synthesis of Thiol-Derivatized Ferrocene-Porphyrins for Studies of Multibit Information Storage,” Gryko, D. T.; Zhao, F.; Yasseri, A. A.; Roth, K. M.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. J. Org. Chem. 2000, 65, 7356–7362. DOI: 10.1021/jo0004862
132. “Capacitance and Conductance Characterization of Self-Assembled Ferrocene Monolayers on Silicon Surfaces for Memory Applications,” Li, Q.; Mathur, G.; Homsi, M.; Surthi, S.; Misra, V.; Malinovskii, V.; Schweikart, K.-H.; Yu, L.; Lindsey, J. S.; Liu, Z.; Dabke, R. B.; Yasseri, A.; Bocian, D. F.; Kuhr, W. G. Appl. Phys. Lett. 2002, 81, 1494–1496. Reprinted in Virtual J. Nanoscale Sci. Technol. August 19, 2002, 6(8). DOI: 10.1063/1.1500781
159. “Multibit Memory Using Self-assembly of Mixed Ferrocene/Porphyrin Monolayers on Silicon,” Li, Q.; Mathur, G.; Gowda, S.; Surthi, S.; Zhao, Q.; Yu, L.; Lindsey, J. S.; Bocian, D. F.; Misra, V. Adv. Mater. 2004, 16, 133–137. DOI: 10.1002/adma.200305680
Hydrodipyrrin chemistry
89. “Rational Synthesis of Meso-Substituted Chlorin Building Blocks,” Strachan, J.-P.; O’Shea, D. F.; Balasubramanian, T.; Lindsey, J. S. J. Org. Chem. 2000, 65, 3160–3172. Additions and Corrections: Strachan, J.-P.; O’Shea, D. F.; Balasubramanian, T.; Lindsey, J. S. J. Org. Chem. 2001, 66, 642. DOI: 10.1021/jo991942t
120. “Synthesis of meso-Substituted Chlorins via Tetrahydrobilene-a Intermediates,” Taniguchi, M.; Ra, D.; Mo, G.; Balasubramanian, T.; Lindsey, J. S. J. Org. Chem. 2001, 66, 7342–7354. DOI: 10.1021/jo0104835
191. “Refined Synthesis of 2,3,4,5-Tetrahydro-1,3,3-trimethyldipyrrin, a Deceptively Simple Precursor to Hydroporphyrins,” Ptaszek, M.; Bhaumik, J.; Kim, H.-J.; Taniguchi, M.; Lindsey, J. S. Org. Process Res. Dev. 2005, 9, 651–659. DOI: 10.1021/op050087e
261. “Refined Syntheses of Hydrodipyrrin Precursors to Chlorin and Bacteriochlorin Building Blocks,” Krayer, M.; Balasubramanian, T.; Ruzié, C.; Ptaszek, M.; Cramer, D. L.; Taniguchi, M.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2009, 13, 1098–1110. DOI: 10.1142/S1088424609001406
317. "Regioselective β-Pyrrolic Bromination of Hydrodipyrrin–Dialkylboron Complexes Facilitates Access to Synthetic Models for Chlorophyll f," Liu, M.; Ptaszek, M.; Mass, O.; Minkler, D. F.; Sommer, R. D.; Bhaumik, J.; Lindsey, J. S. New J. Chem. 2014, 38, 1717–1730. DOI: 10.1039/C3NJ01508D
361. “Synthesis of tailored hydrodipyrrins and examination in directed routes to bacteriochlorins and tetradehydrocorrins,” Zhang, S.; Reddy, M. N.; Mass, O.; Kim, H.-J.; Hu, G.; Lindsey, J. S. New J. Chem. 2017, 41, 11170–11189. DOI: 10.1039/C7NJ01892D
392. "Asymmetric Synthesis of a Bacteriochlorophyll Model Compound Containing trans-Dialkyl Substituents in Ring D," Chau Nguyen, K.; Wang, P.; Sommer, R. D.; Lindsey, J. S. J. Org. Chem. 2020, 85, 6605–6619. DOI: 10.1021/acs.joc.0c00608
414. “Synthesis of AD-Dihydrodipyrrins Equipped with Latent Substituents of Native Chlorophylls and Bacteriochlorophylls,” Wang, P.; Lindsey, J. S. J. Org. Chem. 2021, 86, 11794–11811. DOI: 10.1021/acs.joc.1c01239
423. “Synthesis and Properties of Metalated Tetradehydrocorrins,” Sun, R.; Liu, M.; Wang, P.; Qin, Y.; Schnedermann, C.; Maher, A. G.; Zheng, S.-L.; Liu, S.; Chen, B.; Zhang, S.; Dogutan, D. K.; Lindsey, J. S.; Nocera, D. G. Inorg. Chem. 2022, 12308–12317. DOI: 10.1021/acs.inorgchem.2c01642
425. “Dihydrooxazine Byproduct of a McMurry-Melton Reaction En Route to a Synthetic Bacteriochlorin,” Tran, V.-P.; Matsumoto, N.; Nalaoh, P.; Jing, H.; Chen, C.-Y.; Lindsey, J. S. Organics 2022, 3, 262–274. DOI: 10.3390/org3030019
440. “Bacteriochlorin Syntheses – Status, Problems, and Exploration,” Tran, V.-P.; Wang, P.; Matsumoto, N.; Liu, S.; Jing, H.; Nalaoh, P.; Chau Nguyen, K.; Taniguchi, M.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2023, 27, 1502–1551. DOI: 10.1142/S1088424623501171
Isotopes
9. “Spin Density Distributions in meso-Alkyl/Aryl Hybrid Porphyrin Cation Radicals,” Atamian, M.; Wagner, R. W.; Lindsey, J. S.; Bocian, D. F. Inorg. Chem. 1988, 27, 1510–1512. DOI: 10.1021/ic00281a040
15. “Resonance Raman Spectra and Normal Coordinate Analysis of Reduced Porphyrins. I. Zinc(II) Tetraphenylporphyrin Anion,” Atamian, M.; Donohoe, R. J.; Lindsey, J. S.; Bocian, D. F. J. Phys. Chem. 1989, 93, 2236–2243. DOI: 10.1021/j100343a012
217. “Meso-¹³C-Labeled Porphyrins for Studies of Ground-State Hole Transfer in Multiporphyrin Arrays,” Thamyongkit, P.; Muresan, A. Z.; Diers, J. R.; Holten, D.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2007, 72, 5207–5217. DOI: 10.1021/jo070593x
222. “Characterization of Porphyrin Surface Orientation in Monolayers on Au(111) and Si(100) Using Spectroscopically Labeled Molecules,” Jiao, J.; Thamyongkit, P.; Schmidt, I.; Lindsey, J. S.; Bocian, D. F. J. Phys. Chem. C 2007, 111, 12693–12704. 10.1021/jp073824c
271. “Probing the Rate of Hole Transfer in Oxidized Synthetic Chlorin Dyads via Site-Specific ¹³C-Labeling,” Nieves-Bernier, E. J.; Taniguchi, M.; Diers, J. R.; Holten, D.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2010, 75, 3193–3202. (Selected as featured article) DOI: 10.1021/jo100527h
313. "Synthesis of 24 Bacteriochlorin Isotopologues, Each Containing a Symmetrical Pair of 13C or 15N Atoms in the Inner Core of the Macrocycle," Chen, C.-Y.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2014, 79, 1001–1016. DOI: 10.1021/jo402488n
320. "NMR Spectral Properties of 16 Synthetic Bacteriochlorins with Site-Specific 13C or 15N Substitution," Chen, C.-Y.; Taniguchi, M.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2014, 18, 433–456. (Cover art for the issue containing paper 320) DOI: 10.1142/S1088424614500199
322. "Vibronic Characteristics and Spin-Density Distributions in Bacteriochlorins as Revealed by Spectroscopic Studies of 16 Isotopologues. Implications for Energy- and Electron-Transfer in Natural Photosynthesis and Artificial Solar-Energy Conversion," Diers, J. R.; Tang, Q.; Hondros, C. J.; Chen, C.-Y.; Holten, D.; Lindsey, J. S.; Bocian, D. F. J. Phys. Chem. B 2014, 118, 7520–7532. DOI: 10.1021/jp504286w
421. “De Novo Synthesis of Bacteriochlorins Bearing Four Trideuteriomethyl Groups,” Jing, H.; Tang, Q.; Bocian, D. F.; Lindsey, J. S. Organics 2022, 3, 22–37. DOI: 10.3390/org3010002
Light-Harvesting
Biohybrids
286. "Biohybrid Photosynthetic Antenna Complexes for Enhanced Light-Harvesting," Springer, J. W.; Parkes-Loach, P. S.; Reddy, K. R.; Krayer, M.; Jiao, J.; Lee, G. M.; Niedzwiedzki, D. M.; Harris, M. A.; Kirmaier, C.; Bocian, D. F.; Lindsey, J. S.; Holten, D.; Loach, P. A. J. Am. Chem. Soc. 2012, 134, 4589–4599. DOI: 10.1021/ja207390y
303. "Palette of Lipophilic Bioconjugatable Bacteriochlorins for Construction of Biohybrid Light-Harvesting Architectures," Reddy, K. R.; Jiang, J.; Krayer, M.; Harris, M. A.; Springer, J. W.; Yang, E.; Jiao, J.; Niedzwiedzki, D. M.; Pandithavidana, D.; Parkes-Loach, P. S.; Kirmaier, C.; Loach, P. A.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Chem. Sci. 2013, 4, 2036–2053. DOI: 10.1039/C3SC22317E
310. "Integration of Multiple Chromophores with Native Photosynthetic Antennas to Enhance Solar Energy Capture and Delivery," Harris, M. A.; Parkes-Loach, P. S.; Springer, J. W.; Jiang, J.; Martin, E. C.; Qian, P.; Jiao, J.; Niedzwiedzki, D. M.; Kirmaier, C.; Olsen, J. D.; Bocian, D. F.; Holten, D.; Hunter, C. N.; Lindsey, J. S.; Loach, P. A. Chem. Sci. 2013, 4, 3924–3933. DOI: 10.1039/C3SC51518D
312. "Hydrophilic Tetracarboxy Bacteriochlorins for Photonics Applications," Jiang, J.; Vairaprakash, P.; Reddy, K. R.; Sahin, T.; Pavan, M. P.; Lubian, E.; Lindsey, J. S. Org. Biomol. Chem. 2014, 12, 86–103. DOI: 10.1039/C3OB41791C
316. "Versatile Design of Biohybrid Light-Harvesting Architectures to Tune Location, Density and Spectral Coverage of Attached Synthetic Chromophores for Enhanced Energy Capture," Harris, M. A.; Jiang, J.; Niedzwiedzki, D. M.; Jiao, J.; Taniguchi, M.; Kirmaier, C.; Loach, P. A.; Bocian, D. F.; Lindsey, J. S.; Holten, D.; Parkes-Loach, P. S. Photosyn. Res. 2014, 121, 35–48. DOI: 10.1007/s11120-014-9993-8
319. "Amphiphilic, Hydrophilic, or Hydrophobic Synthetic Bacteriochlorins in Biohybrid Light-Harvesting Architectures. Consideration of Molecular Designs," Jiang, J.; Reddy, K. R.; Pavan, M. P.; Lubian, E.; Harris, M. A.; Jiao, J.; Kirmaier, C.; Parkes-Loach, P. S.; Loach, P. A.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Photosyn. Res. 2014, 122, 187–202. DOI: 10.1007/s11120-014-0021-9
323. "Enhanced Light-harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1-like Antennas," Harris, M. A.; Sahin, T.; Jiang, J.; Vairaprakash, P.; Parkes-Loach, P. S.; Niedzwiedzki, D. M.; Kirmaier, C.; Loach, P. A.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Photochem. Photobiol. 2014, 90, 1264–1276. DOI: 10.1111/php.12319
353. “Multi-step excitation energy transfer engineering in genetic fusions of natural and synthetic light-harvesting proteins,” Mancini, J. A.; Kodali, G.; Jiang, J.; Reddy, K. R.; Lindsey, J. S.; Bryant, D. A.; Dutton, P. L.; Moser, C. C. J. R. Soc. Interface 2017, 14, 20160896. DOI: 10.1098/rsif.2016.0896
367. “Expanding Covalent Attachment Sites of Nonnative Chromophores to Encompass the C-Terminal Hydrophilic Domain in Biohybrid Light-Harvesting Architectures,” Hood, D.; Sahin, T.; Parkes-Loach, P. S.; Jiao, J.; Harris, M. A.; Dilbeck, P.; Niedzwiedzki, D. M.; Kirmaier, C.; Loach, P. A.; Bocian, D. F.; Lindsey, J. S.; Holten, D. ChemPhotoChem 2018, 2, 300–303. DOI: 10.1002/cptc.201700182
Combinatorics
305. "Enumeration of Virtual Libraries of Combinatorial Modular Macrocyclic (Bracelet, Necklace) Architectures and their Linear Counterparts," Taniguchi, M.; Du, H.; Lindsey, J. S. J. Chem. Inf. Model. 2013, 53, 2203–2216. DOI: 10.1021/ci400175f
314. "Statistical Considerations on the Formation of Circular Photosynthetic Light-Harvesting Complexes from Rhodopseudomonas palustris," Taniguchi, M.; Henry, S.; Cogdell, R. J.; Lindsey, J. S. Photosyn. Res. 2014, 121, 49–60. DOI: 10.1007/s11120-014-9975-x
Cyanine dyes
18. “Visible Light-Harvesting in Covalently-Linked Porphyrin-Cyanine Dyes,” Lindsey, J. S.; Brown, P. A.; Siesel, D. A. Tetrahedron 1989, 45, 4845–4866. DOI: 10.1016/S0040-4020(01)85156-5
377. “Heuristics from Modeling of Spectral Overlap in Förster Resonance Energy Transfer (FRET),” Qi, Q.; Taniguchi, M.; Lindsey, J. S. J. Chem. Inf. Model. 2019, 59, 652–667. DOI: 10.1021/acs.jcim.8b00753
Cyclic hexamers
79. “Template-Directed Synthesis, Excited-State Photodynamics, and Electronic Communication in a Hexameric Wheel of Porphyrins,” Li, J.; Ambroise, A.; Yang, S. I.; Diers, J. R.; Seth, J.; Wack, C. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Am. Chem. Soc. 1999, 121, 8927–8940. DOI: 10.1021/ja991730d
100. “A Self-Assembled Light-Harvesting Array of Seven Porphyrins in a Wheel and Spoke Architecture,” Ambroise, A.; Li, J.; Yu, L.; Lindsey, J. S. Org. Lett. 2000, 2, 2563–2566. DOI: 10.1021/ol006036d
124. “Rational Syntheses of Cyclic Hexameric Porphyrin Arrays for Studies of Self-Assembling Light-Harvesting Systems,” Yu, L.; Lindsey, J. S. J. Org. Chem. 2001, 66, 7402–7419. DOI: 10.1021/jo010742q
149. “Synthesis of Cyclic Hexameric Porphyrin Arrays. Anchors for Surface Immobilization and Columnar Self-Assembly,” Tomizaki, K.-y.; Yu, L.; Wei, L.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2003, 68, 8199–8207. DOI: 10.1021/jo034861c
169. “Structural Characterization of Modular Supramolecular Architectures in Solution,” Tiede, D. M.; Zhang, R.; Chen, L. X.; Yu, L.; Lindsey, J. S. J. Am. Chem. Soc. 2004, 126, 14054–14062. DOI: 10.1021/ja048209q
206. “Mechanisms, Pathways, and Dynamics of Excited-State Energy Flow in Self-Assembled Wheel-and-Spoke Light-Harvesting Architectures,” Song, H.-E.; Kirmaier, C.; Schwartz, J. K.; Hindin, E.; Yu, L.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2006, 110, 19121–19130. DOI: 10.1021/jp064000i
207. “Effects of Multiple Pathways on Excited-State Energy Flow in Self-Assembled Wheel-and-Spoke Light-Harvesting Architectures,” Song, H.-E.; Kirmaier, C.; Schwartz, J. K.; Hindin, E.; Yu, L.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2006, 110, 19131–19139. DOI: 10.1021/jp064001a
253. “Solution-State Conformational Ensemble of a Hexameric Porphyrin Array Characterized Using Molecular Dynamics and X-ray Scattering,” Mardis, K. L.; Sutton, H. M.; Zuo, X.; Lindsey, J. S.; Tiede, D. M. J. Phys. Chem. A 2009, 113, 2516–2523. DOI: 10.1021/jp808318x
Hydroporphyrin arrays
146. “Comparison of Excited-State Energy Transfer in Arrays of Hydroporphyrins (Chlorins, Oxochlorins) Versus Porphyrins: Rates, Mechanisms, and Design Criteria,” Taniguchi, M.; Ra, D.; Kirmaier, C.; Hindin, E.; Schwartz, J. K.; Diers, J. R.; Knox, R. S.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Am. Chem. Soc. 2003, 125, 13461–13470. DOI: 10.1021/ja035987u
179. “Introduction of a Third Meso Substituent into Diaryl Chlorins and Oxochlorins,” Taniguchi, M.; Kim, M. N.; Ra, D.; Lindsey, J. S. J. Org. Chem. 2005, 70, 275–285. DOI: 10.1021/jo048440m
234. “Synthesis and Excited-State Photodynamics of a Chlorin–Bacteriochlorin Dyad – Through-Space Versus Through-Bond Energy Transfer In Tetrapyrrole Arrays,” Muthiah, C.; Kee, H. L.; Diers, J. R.; Fan, D.; Ptaszek, M.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Photochem. Photobiol. 2008, 84, 786–801. DOI: 10.1111/j.1751-1097.2007.00258.x
243. “Examination of Chlorin–Bacteriochlorin Energy-Transfer Dyads as Prototypes for Near-Infrared Molecular Imaging Probes,” Kee, H. L.; Nothdurft, R.; Muthiah, C.; Diers, J. R.; Fan, D.; Ptaszek, M.; Bocian, D. F.; Lindsey, J. S.; Culver, J. P.; Holten, D. Photochem. Photobiol. 2008, 84, 1061–1072. DOI: 10.1111/j.1751-1097.2008.00409.x
254. “Chlorin-Bacteriochlorin Energy-transfer Dyads as Prototypes for Near-infrared Molecular Imaging Probes: Controlling Charge-transfer and Fluorescence Properties in Polar Media,” Kee, H. L.; Diers, J. R.; Ptaszek, M.; Muthiah, C.; Fan, D.; Lindsey, J. S.; Bocian, D. F.; Holten, D. Photochem. Photobiol. 2009, 85, 909–920. DOI: 10.1111/j.1751-1097.2008.00532.x
271. “Probing the Rate of Hole Transfer in Oxidized Synthetic Chlorin Dyads via Site-Specific ¹³C-Labeling,” Nieves-Bernier, E. J.; Taniguchi, M.; Diers, J. R.; Holten, D.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2010, 75, 3193–3202. (Selected as featured article) DOI: 10.1021/jo100527h
431. “Dyads with Tunable Near-Infrared Donor–Acceptor Excited-State Energy Gaps: Molecular Design and Förster Analysis for Ultrafast Energy Transfer,” Jing, H.; Magdaong, N. C. M.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Phys. Chem. Chem. Phys. 2023, 25, 1827–1847. DOI: 10.1039/d2cp04689j
433. “Investigation of a Bacteriochlorin-containing Pentad for Panchromatic Light-Harvesting and Charge Separation,” Jing, H.; Magdaong, N. C. M.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Phys. Chem. Chem. Phys. 2023, 25, 1781–1798. DOI: 10.1039/D2CP05400K
447. “Chlorin–Dextran Conjugates for Brightness Enhancement in Water,” Liu, S.; Lindsey, J. S.; Taniguchi, M. Proc. SPIE 2024, 12862, 128620A. DOI: 10.1117/12.3000409
458. “Synthesis of (Oxo)chlorin Dimers Chelated with Thallium(III),” Aravindu, K.; Taniguchi, M.; Bocian, D. F.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2024, 28, 527–535. DOI: 10.1142/S1088424624500524
Perylenes and Rylenes
92. “A Tightly Coupled Linear Array of Perylene, Bis(Porphyrin), and Phthalocyanine Units that Functions as a Photoinduced Energy-Transfer Cascade,” Miller, M. A.; Lammi, R. K.; Prathapan, S.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2000, 65, 6634–6649. DOI: 10.1021/jo0007940
113. “Synthesis and Excited-State Photodynamics of Perylene-Porphyrin Dyads. 1. Parallel Energy and Charge Transfer via a Diphenylethyne Linker,” Prathapan, S.; Yang, S. I.; Seth, J.; Miller, M. A.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Phys. Chem. B 2001, 105, 8237–8248. DOI: 10.1021/jp010335i
114. “Synthesis and Excited-State Photodynamics in Perylene-Porphyrin Dyads 2. Effects of Porphyrin Metalation State on the Energy-Transfer, Charge-Transfer, and Deactivation Channels,” Yang, S. I.; Prathapan, S.; Miller, M. A.; Seth, J.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2001, 105, 8249–8258. DOI: 10.1021/jp010336a
118. “Synthesis and excited-state photodynamics of perylene–porphyrin dyads part 3. Effects of perylene, linker, and connectivity on ultrafast energy transfer,” Yang, S. I.; Lammi, R. K.; Prathapan, S.; Miller, M. A.; Seth, J.; Diers, J. R.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Mater. Chem. 2001, 11, 2420–2430. DOI: 10.1039/B102741G
130. “Weakly Coupled Molecular Photonic Wires: Synthesis and Excited-State Energy-Transfer Dynamics,” Ambroise, A.; Kirmaier, C.; Wagner, R. W.; Loewe, R. S.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2002, 67, 3811–3826. DOI: 10.1021/jo025561i
133. “Synthesis and excited-state photodynamics in perylene-porphyrin dyads. 4. Ultrafast charge separation and charge recombination between tightly coupled units in polar media,” Kirmaier, C.; Yang, S. I.; Prathapan, S.; Miller, M. A.; Diers, J. R.; Bocian, D. F.; Lindsey, J. S.; Holten, D. Res. Chem. Intermed. 2002, 28, 719–740. DOI: 10.1163/15685670260469384
136. “Synthesis and Photophysical Properties of Light-Harvesting Arrays Comprised of a Porphyrin Bearing Multiple Perylene-Monoimide Accessory Pigments,” Tomizaki, K.-y.; Loewe, R. S.; Kirmaier, C.; Schwartz, J. K.; Retsek, J. L.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2002, 67, 6519–6534. DOI: 10.1021/jo0258002
138. “Synthesis of perylene–porphyrin building blocks and rod-like oligomers for light-harvesting applications,” Loewe, R. S.; Tomizaki, K.-y.; Youngblood, W. J.; Bo, Z.; Lindsey, J. S. J. Mater. Chem. 2002, 12, 3438–3451. DOI: 10.1039/B205680A
139. “Synthesis of perylene–porphyrin dyads for light-harvesting studies,” Loewe, R. S.; Tomizaki, K.-y.; Chevalier, F.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2002, 6, 626–642. DOI: 10.1142/S1088424602000774
141. “Synthesis and Excited-State Photodynamics of A Perylene-Monoimide-Oxochlorin Dyad. A Light-Harvesting Array,” Muthukumaran, K.; Loewe, R. S.; Kirmaier, C.; Hinden, E.; Schwartz, J. K.; Sazanovich, I. V.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Phys. Chem. B 2003, 107, 3431–3442. DOI: 10.1021/jp026941a
142. “Synthesis and Excited-State Photodynamics of Perylene-Bis(imide)-Oxochlorin Dyads. A Charge-Separation Motif,” Kirmaier, C.; Hinden, E.; Schwartz, J. K.; Sazanovich, I. V.; Diers, J. R.; Muthukumaran, K.; Taniguchi, M.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2003, 107, 3443–3454. DOI: 10.1021/jp0269423
143. “Practical synthesis of perylene-monoimide building blocks that possess features appropriate for use in porphyrin-based light-harvesting arrays,” Tomizaki, K.-Y.; Thamyongkit, P.; Loewe, R. S.; Lindsey, J. S. Tetrahedron 2003, 59, 1191–1207. DOI: 10.1016/S0040-4020(03)00020-6
209. “Theoretical Solar-to-Electrical Energy-Conversion Efficiencies of Perylene-Porphyrin Light-Harvesting Arrays,” Hasselman, G. M.; Watson, D. F.; Stromberg, J. S.; Bocian, D. F.; Holten, D.; Lindsey, J. S.; Meyer, G. J. J. Phys. Chem. B 2006, 110, 25430–25440. DOI: 10.1021/jp064547x
264. “Excited-State Photodynamics of Perylene-Porphyrin Dyads. 5. Tuning Light-Harvesting Characteristics via Perylene Substituents, Connection Motif, and 3-Dimensional Architecture,” Kirmaier, C.; Song, H.-E.; Yang, E. K.; Schwartz, J. K.; Hindin, E.; Diers, J. R.; Loewe, R. S.; Tomizaki, K.-y.; Chevalier, F.; Ramos, L.; Birge, R. R.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2010, 114, 14249–14264. DOI: 10.1021/jp910705q
308. "Distinct Photophysical and Electronic Characteristics of Strongly Coupled Dyads Containing a Perylene Accessory Pigment and a Porphyrin, Chlorin, or Bacteriochlorin," Wang, J.; Yang, E.; Diers, J. R.; Niedzwiedzki, D. M.; Kirmaier, C.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2013, 117, 9288–9304. DOI: 10.1021/jp405004d
315. "Probing Electronic Communication for Efficient Light-Harvesting Functionality: Dyads Containing a Common Perylene and a Porphyrin, Chlorin, or Bacteriochlorin," Yang, E.; Wang, J.; Diers, J. R.; Niedzwiedzki, D. M.; Kirmaier, C.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2014, 118, 1630–1647. DOI: 10.1021/jp411629m
325. "Panchromatic Absorbers for Solar Light-Harvesting," Alexy, E. J.; Yuen, J. M.; Chandrashaker, V.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Chem. Commun. 2014, 50, 14512–14515. DOI: 10.1039/C4CC06853J
347. "Panchromatic chromophore–tetrapyrrole light-harvesting arrays constructed from bodipy, perylene, terrylene, porphyrin, chlorin, and bacteriochlorin building blocks," Hu, G.; Liu, R.; Alexy, E. J.; Mandal, A. K.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2016, 40, 8032–8052. DOI: 10.1039/C6NJ01782G
350. "Tuning the Electronic Structure and Properties of Perylene–Porphyrin–Perylene Panchromatic Absorbers," Amanpour, J.; Hu, G.; Alexy, E. J.; Mandal, A. K.; Kang, H. S.; Yuen, J. M.; Diers, J. R.; Lindsey, J. S.; Holten, D.; Bocian, D. F. J. Phys. Chem. A 2016, 120, 7434–7450. DOI: 10.1021/acs.jpca.6b06857
366. “Tailoring Panchromatic Absorption and Excited-State Dynamics of Tetrapyrrole–Chromophore (Bodipy, Rylene) Arrays – The Interplay of Orbital Mixing and Configuration Interaction,” Mandal, A. K.; Diers, J. R.; Niedzwiedzki, D. M.; Hu, G.; Liu, R.; Alexy, E. J.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Am. Chem. Soc. 2017, 139, 17547–17564. DOI: 10.1021/jacs.7b09548
372. “Synthesis of arrays containing porphyrin, chlorin, and perylene-imide constituents for panchromatic light-harvesting and charge separation,” Hu, G.; Kang, H. S.; Mandal, A. K.; Roy, A.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. RSC Adv. 2018, 8, 23854–23874. DOI: 10.1039/C8RA04052D
374. “Origin of Panchromaticity in Multichromophore–Tetrapyrrole Arrays,” Yuen, J.; Diers, J. R.; Alexy, E. J.; Roy, A.; Mandal, A. K.; Kang, H. S.; Niedzwiedzki, D. M.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. A 2018, 122, 7181–7201. DOI: 10.1021/acs.jpca.8b06815
378. “Single-Polymer–Single-Cargo Strategy Packages Hydrophobic Fluorophores in Aqueous Solution with Retention of Inherent Brightness,” Liu, R.; Lindsey, J. S. ACS Macro Lett. 2019, 8, 79–83. Erratum: ACS Macro Lett. 2019, 8, 154–154. DOI: 10.1021/acsmacrolett.8b00907
400. "Aqueous solubilization of hydrophobic tetrapyrrole macrocycles by attachment to an amphiphilic single-chain nanoparticle (SCNP)," Liu, R.; Liu, S.; Hu, G.; Lindsey, J. S. New J. Chem. 2020, 44, 21293–21308. DOI: 10.1039/D0NJ04413J
403. "Single-Fluorophore Single-Chain Nanoparticle Undergoes Fluorophore-Driven Assembly with Fluorescence Features Retained in Physiological Milieu," Liu, S.; Rong, J.; Liu, R.; Lindsey, J. S. ACS Appl. Polym. Mater. 2021, 3, 1767–1776. DOI: 10.1021/acsapm.0c01313
416. “Electronic Structure and Excited-State Dynamics of Rylene–Tetrapyrrole Panchromatic Absorbers,” Rong, J.; Magdaong, N. C. M.; Taniguchi, M.; Diers, J. R.; Niedzwiedzki, D. M.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. A 2021, 125, 7900–7919. DOI: 10.1021/acs.jpca.1c05771
429. “Balancing Panchromatic Absorption and Multistep Charge Separation in a Compact Molecular Architecture,” Roy, A.; Magdaong, N. C. M.; Jing, H.; Rong, J.; Diers, J. R.; Kang, H. S.; Mandal, A. K.; Niedzwiedzki, D. M.; Taniguchi, M.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. A 2022, 126, 9353–9365. DOI: 10.1021/acs.jpca.2c06040
430. “Panchromatic Absorbers Tethered for Bioconjugation or Surface Attachment,” Liu, R.; Rong, J.; Wu, Z.; Taniguchi, M.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Molecules 2022, 27, 6501. DOI: 10.3390/molecules27196501
433. “Investigation of a Bacteriochlorin-containing Pentad for Panchromatic Light-Harvesting and Charge Separation,” Jing, H.; Magdaong, N. C. M.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Phys. Chem. Chem. Phys. 2023, 25, 1781–1798. DOI: 10.1039/D2CP05400K
Phthalocyanines
83. “Synthesis and Properties of Star-Shaped Multiporphyrin-Phthalocyanine Light-Harvesting Arrays,” Li, J.; Diers, J. R.; Seth, J.; Yang, S. I.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Org. Chem. 1999, 64, 9090–9100. DOI: 10.1021/jo991001g
84. “Efficient Synthesis of Light-Harvesting Arrays Composed of Eight Porphyrins and One Phthalocyanine,” Li, J.; Lindsey, J. S. J. Org. Chem. 1999, 64, 9101–9108. DOI: 10.1021/jo991102e
85. “Synthesis and excited-state photodynamics of phenylethyne-linked porphyrin-phthalocyanine dyads,” Yang, S. I.; Li, J.; Cho, H. S.; Kim, D.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Mater. Chem. 2000, 10, 283–296. DOI: 10.1039/A906273D
92. “A Tightly Coupled Linear Array of Perylene, Bis(Porphyrin), and Phthalocyanine Units that Functions as a Photoinduced Energy-Transfer Cascade,” Miller, M. A.; Lammi, R. K.; Prathapan, S.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2000, 65, 6634–6649. DOI: 10.1021/jo0007940
Porphyrin arrays (all others)
B6. “Modular Design of Multi-Porphyrin Arrays for Studies in Photosynthesis and Molecular Photonics,” Lindsey, J. S. In Modular Chemistry, Michl, J. Ed., NATO ASI Series C: Mathematical and Physical Sciences, Vol. 499, Kluwer Academic Publishers: Dordrecht, 1997, pp. 517–528.
B7. “Discussion of the Moore and Seeman Lectures,” Lindsey, J. S. In Modular Chemistry, Michl, J. Ed., NATO ASI Series C: Mathematical and Physical Sciences, Vol. 499, Kluwer Academic Publishers: Dordrecht, 1997, pp. 105–122.
29. “Building-block synthesis of porphyrin light-harvesting arrays,” Prathapan, S.; Johnson, T. E.; Lindsey, J. S. J. Am. Chem. Soc. 1993, 115, 7519–7520. DOI: 10.1021/ja00069a068
33. “Porphyrin building blocks for modular construction of bioorganic model systems,” Lindsey, J. S.; Prathapan, S.; Johnson, T. E.; Wagner, R. W. Tetrahedron 1994, 50, 8941–8968. DOI: 10.1016/S0040-4020(01)85364-3
37. “A molecular photonic wire,” Wagner, R. W.; Lindsey, J. S. J. Am. Chem. Soc. 1994, 116, 9759–9760. DOI: 10.1021/ja00100a055
41. “Synthesis of Ethyne-Linked or Butadiyne-Linked Porphyrin Arrays Using Mild, Copper-Free, Pd-Mediated Coupling Reactions,” Wagner, R. W.; Johnson, T. E.; Li, F.; Lindsey, J. S. J. Org. Chem. 1995, 60, 5266–5273. DOI: 10.1021/jo00121a052
43. “Molecular Optoelectronic Gates,” Wagner, R. W.; Lindsey, J. S.; Seth, J.; Palaniappan, V.; Bocian, D. F. J. Am. Chem. Soc. 1996, 118, 3996–3997. DOI: 10.1021/ja9602657
45. “Soluble Synthetic Multiporphyrin Arrays. 1. Modular Design and Synthesis,” Wagner, R. W.; Johnson, T. E.; Lindsey, J. S. J. Am. Chem. Soc. 1996, 118, 11166–11180. DOI: 10.1021/ja961611n
46. “Soluble Synthetic Multiporphyrin Arrays. 2. Photodynamics of Energy-Transfer Processes,” Hsiao, J.-S.; Krueger, B. P.; Wagner, R. W.; Johnson, T. E.; Delaney, J. K.; Mauzerall, D. C.; Fleming, G. R.; Lindsey, J. S.; Bocian, D. F.; Donohoe, R. J. J. Am. Chem. Soc. 1996, 118, 11181–11193. DOI: 10.1021/ja961612f
48. “Synthesis of Linear Amphipathic Porphyrin Dimers and Trimers: An Approach to Bilayer Lipid Membrane Spanning Porphyrin Arrays,” Nishino, N.; Wagner, R. W.; Lindsey, J. S. J. Org. Chem. 1996, 61, 7534–7544. DOI: 10.1021/jo9611576
51. “Effects of central metal ion (Mg, Zn) and solvent on singlet excited-state energy flow in porphyrin-based nanostructures,” Li, F.; Gentemann, S.; Kalsbeck, W. A.; Seth, J.; Lindsey, J. S.; Holten, D.; Bocian, D. F. J. Mater. Chem. 1997, 7, 1245–1262. DOI: 10.1039/A700146K
57. “Synthesis and Characterization of Tetrachlorodiarylethyne-Linked Porphyrin Dimers. Effects of Linker Architecture on Intradimer Electronic Communication,” Strachan, J.-P.; Gentemann, S.; Seth, J.; Kalsbeck, W. A.; Lindsey, J. S.; Holten, D.; Bocian, D. F. Inorg. Chem. 1998, 37, 1191–1201. DOI: 10.1021/ic970967c
60. “Synthesis and Excited-State Photodynamics of a Molecular Square Containing Four Mutually Coplanar Porphyrins,” Wagner, R. W.; Seth, J.; Yang, S. I.; Kim, D.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Org. Chem. 1998, 63, 5042–5049. DOI: 10.1021/jo9803683
77. “An Artificial Photosynthetic Antenna-Reaction Center Complex,” Kuciauskas, D.; Liddell, P. A.; Lin, S.; Johnson, T. E.; Weghorn, S. J.; Lindsey, J. S.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am. Chem. Soc. 1999, 121, 8604–8614. DOI: 10.1021/ja991255j
78. “Effects of Metalation State (Free base, Mg, Zn, Cd) on Excited-State Energy Transfer in Diarylethyne-Linked Porphyrin Dimers,” Hascoat, P.; Yang, S. I.; Lammi, R. K.; Alley, J.; Bocian, D. F.; Lindsey, J. S.; Holten, D. Inorg. Chem. 1999, 38, 4849–4853. DOI: 10.1021/ic990469z
91. “Structural Control of Photoinduced Energy Transfer Between Adjacent and Distant Sites in Multiporphyrin Arrays,” Lammi, R. K.; Ambroise, A.; Balasubramanian, T.; Wagner, R. W.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Am. Chem. Soc. 2000, 122, 7579–7591. DOI: 10.1021/ja001031x
92. “A Tightly Coupled Linear Array of Perylene, Bis(Porphyrin), and Phthalocyanine Units that Functions as a Photoinduced Energy-Transfer Cascade,” Miller, M. A.; Lammi, R. K.; Prathapan, S.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2000, 65, 6634–6649. DOI: 10.1021/jo0007940
120. “Synthesis of meso-Substituted Chlorins via Tetrahydrobilene-a Intermediates,” Taniguchi, M.; Ra, D.; Mo, G.; Balasubramanian, T.; Lindsey, J. S. J. Org. Chem. 2001, 66, 7342–7354. DOI: 10.1021/jo0104835
121. “Efficient Energy Transfer and Electron Transfer in an Artificial Photosynthetic Antenna-Reaction Center Complex,” Kodis, G.; Liddell, P. A.; de la Garza, L.; Clausen, P. C.; Lindsey, J. S.; Moore, A. L.; Moore, T. A.; Gust, D. J. Phys. Chem. A 2002, 106, 2036–2048. DOI: 10.1021/jp012133s
122. “Synthesis and Properties of Weakly Coupled Dendrimeric Multiporphyrin Light-Harvesting Arrays and Hole-Storage Reservoirs,” del Rosario Benites, M.; Johnson, T. E.; Weghorn, S.; Yu, L.; Rao, P. D.; Diers, J. R.; Yang, S. I.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Mater. Chem. 2002, 12, 65–80. DOI: 10.1039/B105108N
125. “Investigation of two rational routes for preparing p-phenylene-linked porphyrin trimers,” Yu, L.; Lindsey, J. S. Tetrahedron 2001, 57, 9285–9298. DOI: 10.1016/S0040-4020(01)00928-0
126. “Design and synthesis of light-harvesting rods for intrinsic rectification of the migration of excited-state energy and ground-state holes,” Loewe, R. S.; Lammi, R. K.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Mater. Chem. 2002, 12, 1530–1552. DOI: 10.1039/b108168c
128. “Glaser-Mediated Synthesis and Photophysical Characterization of Diphenylbutadiyne-Linked Porphyrin Dyads,” Youngblood, W. J.; Gryko, D. T.; Lammi, R. K.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2002, 67, 2111–2117. DOI: 10.1021/jo016150p
130. “Weakly Coupled Molecular Photonic Wires: Synthesis and Excited-State Energy-Transfer Dynamics,” Ambroise, A.; Kirmaier, C.; Wagner, R. W.; Loewe, R. S.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2002, 67, 3811–3826. DOI: 10.1021/jo025561i
138. “Synthesis of perylene–porphyrin building blocks and rod-like oligomers for light-harvesting applications,” Loewe, R. S.; Tomizaki, K.-y.; Youngblood, W. J.; Bo, Z.; Lindsey, J. S. J. Mater. Chem. 2002, 12, 3438–3451. DOI: 10.1039/B205680A
144. “Formation of Porphyrins in the Presence of Acid-Labile Metalloporphyrins. A New Route to Mixed-Metal Multiporphyrin Arrays,” Speckbacher, M.; Yu, L.; Lindsey, J. S. Inorg. Chem. 2003, 42, 4322–4337. DOI: 10.1021/ic026206d
147. “Excited-State Energy-Transfer Dynamics of Self-Assembled Imine-Linked Porphyrin Dyads,” Sazanovich, I. V.; Balakumar, A.; Muthukumaran, K.; Hindin, E.; Kirmaier, C.; Diers, J. R.; Lindsey, J. S.; Bocian, D. F.; Holten, D. Inorg. Chem. 2003, 42, 6616–6628. (Cover art for the issue containing papers 147 and 148) DOI: 10.1021/ic034558u
148. “Excited-State Energy-Transfer Dynamics in Self-Assembled Triads Composed of Two Porphyrins and an Intervening Bis(dipyrrinato)metal Complex,” Yu, L.; Muthukumaran, K.; Sazanovich, I. V.; Kirmaier, C.; Hindin, E.; Diers, J. R.; Boyle, P. D.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Inorg. Chem. 2003, 42, 6629–6647. DOI: 10.1021/ic034559m
162. “Synthesis of phenylethyne-linked porphyrin dyads,” Tomizaki, K.-y.; Lysenko, A. B.; Taniguchi, M.; Lindsey, J. S. Tetrahedron 2004, 60, 2011–2023. DOI: 10.1016/j.tet.2004.01.003
163. “Swallowtail Porphyrins: Synthesis, Characterization and Incorporation into Porphyrin Dyads,” Thamyongkit, P.; Speckbacher, M.; Diers, J. R.; Kee, H. L.; Kirmaier, C.; Holten, D.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2004, 69, 3700–3710. DOI: 10.1021/jo049860e
171. “Synthesis of Swallowtail-Substituted Multiporphyrin Rods,” Thamyongkit, P.; Lindsey, J. S. J. Org. Chem. 2004, 69, 5796–5799. DOI: 10.1021/jo049348t
247. “Regiospecifically α-¹³C-Labeled Porphyrins for Studies of Ground-State Hole Transfer in Multiporphyrin Arrays,” Muresan, A, Z.; Thamyongkit, P.; Diers, J. R.; Holten, D.; Lindsey, J. S.; Bocian, D. F. J. Org. Chem. 2008, 73, 6947–6959. (Selected as featured article) DOI: 10.1021/jo8012836
259. “Excited-State Energy Flow in Phenylene-Linked Multiporphyrin Arrays,” Song, H.-E.; Taniguchi, M.; Speckbacher, M.; Yu, L.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2009, 113, 8011–8019. DOI: 10.1021/jp902183g
272. “Synthesis of Oligo(p-Phenylene)-linked Dyads Containing Free Base, Zinc(II) or Thallium(III) Porphyrins for Studies in Artificial Photosynthesis,” Taniguchi, M.; Lindsey, J. S. Tetrahedron 2010, 66, 5549–5565. DOI: 10.1016/j.tet.2010.05.059
297. “Effects of Linker Torsional Constraints on the Rate of Ground-State Hole Transfer in Porphyrin Dyads,” Hondros, C. J.; Aravindu, K.; Diers, J. R.; Holten, D.; Lindsey, J. S.; Bocian, D. F. Inorg. Chem. 2012, 51, 11076–11086. DOI: 10.1021/ic301613k
325. "Panchromatic Absorbers for Solar Light-Harvesting," Alexy, E. J.; Yuen, J. M.; Chandrashaker, V.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Chem. Commun. 2014, 50, 14512–14515. DOI: 10.1039/C4CC06853J
417. “Phenylene-linked tetrapyrrole arrays containing free base and diverse metal chelate forms – Versatile synthetic architectures for catalysis and artificial photosynthesis,” Jing, H.; Rong, J.; Taniguchi, M.; Lindsey, J. S. Coord. Chem. Rev. 2022, 456, 214278. DOI: 10.1016/j.ccr.2021.214278
427. “Probing the Effects of Electronic-Vibrational Resonance on the Rate of Excited-State Energy Transfer in Bacteriochlorin Dyads,” Magdaong, N. C. M.; Jing, H.; Diers, J. R.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. Lett. 2022, 13, 7906–7910. DOI: 10.1021/acs.jpclett.2c02154
434. “Porphyrin building blocks bearing two or four divergent ethynes,” Cao, P.-L. D.; Wu, Z.; Rong, J.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2023, 27, 1049–1058. DOI: 10.1142/S1088424623500219
457. “Synthesis of Porphyrin Triads Chelated with Thallium(III) for Studies of Ground-State Hole/Electron Transfer,” Wang, J.; Taniguchi, M.; Bocian, D. F.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2024, 28, 515–526. DOI: 10.1142/S1088424624500524
Mass spectrometry
23. “252Cf Plasma Desorption Mass Spectrometry in the Synthesis of Porphyrin Model Systems,” Lindsey, J. S.; Chaudhary, T.; Chait, B. T. Anal. Chem. 1992, 64, 2804–2814. DOI: 10.1021/ac00046a025
50. “Laser Desorption Mass Spectrometry of Synthetic Multi-Porphyrin Arrays,” Fenyo, D.; Chait, B. T.; Johnson, T. E.; Lindsey, J. S. J. Porphyrins Phthalocyanines 1997, 1, 93–99. Erratum: J. Porphyrins Phthalocyanines 1997, 1, 213. DOI: 10.1002/(SICI)1099-1409(199701)1:1<93::AID-JPP11>3.0.CO;2-X
70. “Investigation of MALDI-TOF mass spectrometry of diverse synthetic metalloporphyrins, phthalocyanines, and multiporphyrin arrays,” Srinivasan, N.; Haney, C. A.; Lindsey, J. S.; Zhang, W.; Chait, B. T. J. Porphyrins Phthalocyanines 1999, 3, 283–291. DOI: 10.1002/(SICI)1099-1409(199904)3:4<283::AID-JPP132>3.0.CO;2-F
369. “Mass spectrometric detection of chlorophyll a and the tetrapyrrole secondary metabolite tolyporphin A in the filamentous cyanobacterium HT-58-2. Approaches to high-throughput screening of cyanobacteria,” Zhang, Y.; Zhang, R.; Nazari, M.; Bagley, M. C.; Miller, E. S.; Williams, P. G.; Muddiman, D. C.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2017, 21, 759–768. DOI: 10.1142/S108842461750078X
Membranes, vesicles
32. “Synthesis of Amphipathic Porphyrins and Their Photoinduced Electron Transfer Reactions at the Lipid Bilayer-Water Interface,” Hwang, K. C.; Mauzerall, D.; Wagner, R. W.; Lindsey, J. S. Photochem. Photobiol. 1994, 59, 145–151. DOI: 10.1111/j.1751-1097.1994.tb05014.x
48. “Synthesis of Linear Amphipathic Porphyrin Dimers and Trimers: An Approach to Bilayer Lipid Membrane Spanning Porphyrin Arrays,” Nishino, N.; Wagner, R. W.; Lindsey, J. S. J. Org. Chem. 1996, 61, 7534–7544. DOI: 10.1021/jo9611576
290. "Self-organization of tetrapyrrole constituents to give a photoactive protocell," Soares, A. R. M.; Taniguchi, M.; Chandrashaker, V.; Lindsey, J. S. Chem. Sci. 2012, 3, 1963–1974. DOI: 10.1039/C2SC01120D
300. “Expanded Combinatorial Formation of Porphyrin Macrocycles in Aqueous Solution Containing Vesicles. A Prebiotic Model,” Soares, A. R. M.; Taniguchi, M.; Chandrashaker, V.; Lindsey, J. S. New J. Chem. 2013, 37, 1073–1086. DOI: 10.1039/C3NJ41041B
301. “Aqueous-Membrane Partitioning of ß-Substituted Porphyrins Encompassing Diverse Polarity,” Soares, A. R. M.; Thanaiah, Y.; Taniguchi, M.; Lindsey, J. S. New J. Chem. 2013, 37, 1087–1097. DOI: 10.1039/C3NJ41042K
335. "Self-assembled Light-Harvesting System from Chromophores in Lipid Vesicles," Sahin, T.; Harris, M. A.; Vairaprakash, P.; Niedzwiedzki, D. M.; Subramanian, V.; Shreve, A. P.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Phys. Chem. B 2015, 119, 10231–10243. DOI: 10.1021/acs.jpcb.5b04841
Metalation methods
39. “A Simple Method for Preparing Magnesium Porphyrins,” Lindsey, J. S.; Woodford, J. N. Inorg. Chem. 1995, 34, 1063–1069. DOI: 10.1021/ic00109a011
49. “An Investigation of the Scope of Heterogeneous and Homogeneous Procedures for Preparing Magnesium Chelates of Porphyrins, Hydroporphyrins, and Phthalocyanines,” O’Shea, D. F.; Miller, M. A.; Matsueda, H.; Lindsey, J. S. Inorg. Chem. 1996, 35, 7325–7338. DOI: 10.1021/ic960812p
51. “Effects of central metal ion (Mg, Zn) and solvent on singlet excited-state energy flow in porphyrin-based nanostructures,” Li, F.; Gentemann, S.; Kalsbeck, W. A.; Seth, J.; Lindsey, J. S.; Holten, D.; Bocian, D. F. J. Mater. Chem. 1997, 7, 1245–1262. DOI: 10.1039/A700146K
78. “Effects of Metalation State (Free base, Mg, Zn, Cd) on Excited-State Energy Transfer in Diarylethyne-Linked Porphyrin Dimers,” Hascoat, P.; Yang, S. I.; Lammi, R. K.; Alley, J.; Bocian, D. F.; Lindsey, J. S.; Holten, D. Inorg. Chem. 1999, 38, 4849–4853. DOI: 10.1021/ic990469z
85. “Synthesis and excited-state photodynamics of phenylethyne-linked porphyrin-phthalocyanine dyads,” Yang, S. I.; Li, J.; Cho, H. S.; Kim, D.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Mater. Chem. 2000, 10, 283–296. DOI: 10.1039/A906273D
144. “Formation of Porphyrins in the Presence of Acid-Labile Metalloporphyrins. A New Route to Mixed-Metal Multiporphyrin Arrays,” Speckbacher, M.; Yu, L.; Lindsey, J. S. Inorg. Chem. 2003, 42, 4322–4337. DOI: 10.1021/ic026206d
216. “Direct Synthesis of Magnesium Porphine via 1-Formyldipyrromethane,” Dogutan, D. K.; Ptaszek, M.; Lindsey, J. S. J. Org. Chem. 2007, 72, 5008–5011. DOI: 10.1021/jo070532z
223. “Design and synthesis of manganese porphyrins with tailored lipophilicity: Investigation of redox properties and superoxide dismutase activity,” Lahaye, D.; Muthukumaran, K.; Gryko, D.; Hung, C.-H.; Spasojevic, I.; Batinic-Haberle, I.; Lindsey, J. S. Bioorg. Med. Chem. 2007, 15, 7066–7086. DOI: 10.1016/j.bmc.2007.07.015
245. “Photophysical Characterization of Imidazolium-Substituted Pd(II), In(III), and Zn(II) Porphyrins as Photosensitizers for Photodynamic Therapy,” Kee, H. L.; Bhaumik, J.; Diers, J. R.; Mroz, P.; Hamblin, M. R.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Photochem. Photobiol. A: Chem. 2008, 200, 346–355. DOI: 10.1016/j.jphotochem.2008.08.006
272. “Synthesis of Oligo(p-Phenylene)-linked Dyads Containing Free Base, Zinc(II) or Thallium(III) Porphyrins for Studies in Artificial Photosynthesis,” Taniguchi, M.; Lindsey, J. S. Tetrahedron 2010, 66, 5549–5565. DOI: 10.1016/j.tet.2010.05.059
280. “Synthesis and Photochemical Characterization of Stable Indium Bacteriochlorins,” Krayer, M.; Yang, E.; Kim, H.-J.; Kee, H. L.; Deans, R. M.; Sluder, C. E.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Inorg. Chem. 2011, 50, 4607–4618. DOI: 10.1021/ic200325d
294. “Synthesis and Physicochemical Properties of Metallobacteriochlorins,” Chen, C.-Y.; Sun, E.; Fan, D.; Taniguchi, M.; McDowell, B. E.; Yang, E.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Inorg. Chem. 2012, 51, 9443–9464. DOI: 10.1021/ic301262k
306. "Catalytic Diversification Upon Metal Scavenging in a Prebiotic Model for Formation of Tetrapyrrole Macrocycles," Soares, A. R. M.; Anderson, D. R.; Chandrashaker, V.; Lindsey, J. S. New J. Chem. 2013, 37, 2716–2732. DOI: 10.1039/C3NJ00498H
359. “Hydrogen Evolution Catalysis by a Sparsely Substituted Cobalt Chlorin,” Maher, A. G.; Passard, G.; Dogutan, D. K.; Halbach, R. L.; Anderson, B. L.; Gagliardi, C. J.; Taniguchi, M.; Lindsey, J. S.; Nocera, D. G. ACS Catalysis 2017, 7, 3597–3606. DOI: 10.1021/acscatal.7b00969
375. “Unusual Stability of a Bacteriochlorin Electrocatalyst Under Reductive Conditions. A Case Study on CO2 Conversion to CO,” Jiang, J.; Matula, A. J.; Swierk, J. R.; Romano, N.; Wu, Y.; Batista, V.; Crabtree, R. H.; Lindsey, J. S.; Wang, H.; Brudvig, G. W. ACS Catalysis 2018, 8, 10131–10136. DOI: 10.1021/acscatal.8b02991
387. "Use of the Nascent Isocyclic Ring to Anchor Assembly of the Full Skeleton of Model Chlorophylls,” Wang, P.; Lu, F.; Lindsey, J. S. J. Org. Chem. 2020, 85, 702–715. DOI: 10.1021/acs.joc.9b02770
417. “Phenylene-linked tetrapyrrole arrays containing free base and diverse metal chelate forms – Versatile synthetic architectures for catalysis and artificial photosynthesis,” Jing, H.; Rong, J.; Taniguchi, M.; Lindsey, J. S. Coord. Chem. Rev. 2022, 456, 214278. DOI: 10.1016/j.ccr.2021.214278
Molecular information storage
82. “Thiol-Derivatized Porphyrins for Attachment to Electroactive Surfaces,” Gryko, D. T.; Clausen, C.; Lindsey, J. S. J. Org. Chem. 1999, 64, 8635–8647. DOI: 10.1021/jo9911084
90. “Molecular approach toward information storage based on the redox properties of porphyrins in self-assembled monolayers,” Roth, K. M.; Dontha, N.; Dabke, R. B.; Gryko, D. T.; Clausen, C.; Lindsey, J. S.; Bocian, D. F.; Kuhr, W. G. J. Vac. Sci. Technol. B. 2000, 18, 2359–2364. DOI: 10.1116/1.1310657
94. “Synthesis of “Porphyrin-Linker-Thiol” Molecules with Diverse Linkers for Studies of Molecular-Based Information Storage,” Gryko, D. T.; Clausen, C.; Roth, K. M.; Dontha, N.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. J. Org. Chem. 2000, 65, 7345–7355. (Cover art for the issue containing papers 94-98) DOI: 10.1021/jo000487u
95. “Synthesis of Thiol-Derivatized Ferrocene-Porphyrins for Studies of Multibit Information Storage,” Gryko, D. T.; Zhao, F.; Yasseri, A. A.; Roth, K. M.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. J. Org. Chem. 2000, 65, 7356–7362. DOI: 10.1021/jo0004862
96. “Synthesis of Thiol-Derivatized Porphyrin Dimers and Trimers for Studies of Architectural Effects on Multibit Information Storage,” Clausen, C.; Gryko, D. T.; Dabke, R. B.; Dontha, N.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. J. Org. Chem. 2000, 65, 7363–7370. DOI: 10.1021/jo000488m
97. “Investigation of Tightly Coupled Porphyrin Arrays Comprised of Identical Monomers for Multibit Information Storage,” Clausen, C.; Gryko, D. T.; Yasseri, A. A.; Diers, J. R.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. J. Org. Chem. 2000, 65, 7371–7378. DOI: 10.1021/jo000489e
98. “Synthesis of Thiol-Derivatized Europium Porphyrinic Triple-Decker Sandwich Complexes for Multibit Molecular Information Storage,” Li, J.; Gryko, D.; Dabke, R. B.; Diers, J. R.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. J. Org. Chem. 2000, 65, 7379–7390. DOI: 10.1021/jo000490d
104. “Studies related to the design and synthesis of a molecular octal counter,” Gryko, D.; Li, J.; Diers, J. R.; Roth, K. M.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. J. Mater. Chem. 2001, 11, 1162–1180. DOI: 10.1039/b008224o
115. “Investigation of Rational Syntheses of Heteroleptic Porphyrinic Lanthanide (Europium, Cerium) Triple-Decker Sandwich Complexes,” Gross, T.; Chevalier, F.; Lindsey, J. S. Inorg. Chem. 2001, 40, 4762–4774. DOI: 10.1021/ic0101634
127. “Design, synthesis, and characterization of prototypical multistate counters in three distinct architectures,” Schweikart, K.-H.; Malinovskii, V. L.; Diers, J. R.; Yasseri, A. A.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. J. Mater. Chem. 2002, 12, 808–828. DOI: 10.1039/B108520D
131. “Characterization of Charge Storage in Redox-Active Self-Assembled Monolayers,” Roth, K. M.; Lindsey, J. S.; Bocian, D. F.; Kuhr, W. G. Langmuir 2002, 18, 4030–4040. DOI: 10.1021/la025525e
132. “Capacitance and Conductance Characterization of Self-Assembled Ferrocene Monolayers on Silicon Surfaces for Memory Applications,” Li, Q.; Mathur, G.; Homsi, M.; Surthi, S.; Misra, V.; Malinovskii, V.; Schweikart, K.-H.; Yu, L.; Lindsey, J. S.; Liu, Z.; Dabke, R. B.; Yasseri, A.; Bocian, D. F.; Kuhr, W. G. Appl. Phys. Lett. 2002, 81, 1494–1496. Reprinted in Virtual J. Nanoscale Sci. Technol. August 19, 2002, 6(8). DOI: 10.1063/1.1500781
135. “Comparison of Electron-Transfer and Charge-Retention Characteristics of Porphyrin-Containing Self-Assembled Monolayers Designed for Molecular Information Storage,” Roth, K. M.; Gryko, D. T.; Clausen, C.; Li, J.; Lindsey, J. S.; Kuhr, W. G.; Bocian, D. F. J. Phys. Chem. B 2002, 106, 8639–8648. DOI: 10.1021/jp025850a
140. “Measurements of Electron-Transfer Rates of Charge-Storage Molecular Monolayers on Si(100). Toward Hybrid Molecular/Semiconductor Information Storage Devices,” Roth, K. M.; Yasseri, A. A.; Liu, Z.; Dabke, R. B.; Malinovskii, V.; Schweikart, K.-H.; Yu, L.; Tiznado, H.; Zaera, F.; Lindsey, J. S.; Kuhr, W. G.; Bocian, D. F. J. Am. Chem. Soc. 2003, 125, 505–517. DOI: 10.1021/ja021169a
145. “Electrical characterization of redox-active molecular monolayers on SiO2 for memory applications,” Li, Q.; Surthi, S.; Mathur, G.; Gowda, S.; Sorenson, T. A.; Tenent, R. C.; Kuhr, W. G.; Tamaru, S.-I.; Lindsey, J. S.; Liu, Z.; Bocian, D. F.; Misra, V. Appl. Phys. Lett. 2003, 83, 198–200. DOI: 10.1063/1.1584088
149. “Synthesis of Cyclic Hexameric Porphyrin Arrays. Anchors for Surface Immobilization and Columnar Self-Assembly,” Tomizaki, K.-y.; Yu, L.; Wei, L.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2003, 68, 8199–8207. DOI: 10.1021/jo034861c
151. “Synthesis and Characterization of Bis(S-acetylthio)-Derivatized Europium Triple-Decker Monomers and Oligomers,” Schweikart, K.-H.; Malinovskii, V. L.; Yasseri, A. A.; Li, J.; Lysenko, A. B.; Bocian, D. F.; Lindsey, J. S. Inorg. Chem. 2003, 42, 7431–7446. DOI: 10.1021/ic034730u
152. “Diverse Redox-Active Molecules Bearing O-, S-, or Se- Terminated Tethers for Attachment to Silicon in Studies of Molecular Information Storage,” Balakumar, A.; Lysenko, A. B.; Carcel, C.; Malinovskii, V. L.; Gryko, D. T.; Schweikart, K.-H.; Loewe, R. S.; Yasseri, A. A.; Liu, Z.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2004, 69, 1435–1443. (Cover art for the issue containing papers 152-155) DOI: 10.1021/jo034944t
153. “Porphyrins Bearing Arylphosphonic Acid Tethers for Attachment to Oxide Surfaces,” Muthukumaran, K.; Loewe, R. S.; Ambroise, A.; Tamaru, S.-I.; Li, Q.; Mathur, G.; Bocian, D. F.; Misra, V.; Lindsey, J. S. J. Org. Chem. 2004, 69, 1444–1452. DOI: 10.1021/jo034945l
154. “Porphyrins Bearing Mono or Tripodal Benzylphosphonic Acid Tethers for Attachment to Oxide Surfaces,” Loewe, R. S.; Ambroise, A.; Muthukumaran, K.; Padmaja, K.; Lysenko, A. B.; Mathur, G.; Li, Q.; Bocian, D. F.; Misra, V.; Lindsey, J. S. J. Org. Chem. 2004, 69, 1453–1460. DOI: 10.1021/jo034946d
155. “Diverse Redox-Active Molecules Bearing Identical Thiol-Terminated Tripodal Tethers for Studies of Molecular Information Storage,” Wei, L.; Padmaja, K.; Youngblood, W. J.; Lysenko, A. B.; Lindsey, J. S.; Bocian, D. F. J. Org. Chem. 2004, 69, 1461–1469. DOI: 10.1021/jo0349476
156. “Hybrid silicon/molecular memories: co-engineering for novel functionality,” Gowda, S.; Mathur, G.; Li, Q.; Surthi, S.; Zhao, Q.; Lindsey, J. S.; Mobley, K.; Bocian, D. F.; Misra, V. IEDM Tech. Dig. 2003, 537–540. DOI: 10.1109/IEDM.2003.1269339
157. “Molecular Memories that Survive Silicon Device Processing and Real-World Operation,” Liu, Z.; Yasseri, A. A.; Lindsey, J. S.; Bocian, D. F. Science 2003, 302, 1543–1545. DOI: 10.1126/science.1090677
159. “Multibit Memory Using Self-assembly of Mixed Ferrocene/Porphyrin Monolayers on Silicon,” Li, Q.; Mathur, G.; Gowda, S.; Surthi, S.; Zhao, Q.; Yu, L.; Lindsey, J. S.; Bocian, D. F.; Misra, V. Adv. Mater. 2004, 16, 133–137. DOI: 10.1002/adma.200305680
163. “Swallowtail Porphyrins: Synthesis, Characterization and Incorporation into Porphyrin Dyads,” Thamyongkit, P.; Speckbacher, M.; Diers, J. R.; Kee, H. L.; Kirmaier, C.; Holten, D.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2004, 69, 3700–3710. DOI: 10.1021/jo049860e
166. “Multiple-Bit Storage Properties of Porphyrin Monolayers on SiO₂,” Li, Q.; Surthi, S.; Mathur, G.; Gowda, S.; Zhao, Q.; Sorenson, T. A.; Tenent, R. C.; Muthukumaran, K.; Lindsey, J. S.; Misra, V. Appl. Phys. Lett. 2004, 85, 1829–1831. DOI: 10.1063/1.1782254
170. “Synthesis of Porphyrins Bearing Hydrocarbon Tethers and Facile Covalent Attachment to Si(100),” Liu, Z.; Yasseri, A. A.; Loewe, R. S.; Lysenko, A. B.; Malinovskii, V. L.; Zhao, Q.; Surthi, S.; Li, Q.; Misra, V.; Lindsey, J. S.; Bocian, D. F. J. Org. Chem. 2004, 69, 5568–5577. DOI: 10.1021/jo049439q
172. “Characterization of Self-Assembled Monolayers of Porphyrins Bearing Multiple Thiol-Derivatized Rigid-Rod Tethers,” Yasseri, A. A.; Syomin, D.; Malinovskii, V. L.; Loewe, R. S.; Lindsey, J. S.; Zaera, F.; Bocian, D. F. J. Am. Chem. Soc. 2004, 126, 11944–11953. DOI: 10.1021/ja047723t
176. “Modulation of Drain Current by Redox-Active Molecules Incorporated in Si MOSFETs,” Gowda, S.; Mathur, G.; Li, Q.; Surthi, S.; Zhao, Q.; Lindsey, J. S.; Bocian, D. F.; Misra, V. IEEE Tech. Dig. 2004, 707–710. DOI: 10.1109/IEDM.2004.1419267
177. “Structural and Electron-Transfer Characteristics of O-, S-, and Se-Tethered Porphyrin Monolayers on Si(100),” Yasseri, A. A.; Syomin, D.; Loewe, R. S.; Lindsey, J. S.; Zaera, F.; Bocian, D. F. J. Am. Chem. Soc. 2004, 126, 15603–15612. Additions and Corrections (addition of Laha, J. K. as coauthor): J. Am. Chem. Soc. 2005, 127, 9308. DOI: 10.1021/ja045243w
181. “Structural and Electron-Transfer Characteristics of Carbon-Tethered Porphyrin Monolayers on Si(100),” Wei, L.; Syomin, D.; Loewe, R. S.; Lindsey, J. S.; Zaera, F.; Bocian, D. F. J. Phys. Chem. B 2005, 109, 6323–6330. DOI: 10.1021/jp044558v
182. “Synthesis and Film-Forming Properties of Ethynyl Porphyrins,” Liu, Z.; Schmidt, I.; Thamyongkit, P.; Loewe, R. S.; Syomin, D.; Diers, J. R.; Zhao, Q.; Misra, V.; Lindsey, J. S.; Bocian, D. F. Chem. Mater. 2005, 17, 3728–3742. DOI: 10.1021/cm047858y
186. “Solution STM images of porphyrins on HOPG reveal that subtle differences in molecular structure dramatically alter packing geometry,” Zou, Z.-Q.; Wei, L.; Chen, F.; Liu, Z.; Thamyongkit, P.; Loewe, R. S.; Lindsey, J. S.; Mohideen, U.; Bocian, D. F. J. Porphyrins Phthalocyanines 2005, 9, 387–392. DOI: 10.1142/S1088424605000484
189. “A Compact All-Carbon Tripodal Tether Affords High Coverage of Porphyrins on Silicon Surfaces,” Padmaja, K.; Wei, L.; Lindsey, J. S.; Bocian, D. F. J. Org. Chem. 2005, 70, 7972–7978. DOI: 10.1021/jo0510078
190. “Multistate molecular information storage using S-acetylthio-derivatized dyads of triple-decker sandwich coordination compounds,” Lysenko, A. B.; Malinovskii, V. L.; Kisari, P.; Wei, L.; Diers, J. R.; Bocian, D. F.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2005, 9, 491–508. DOI: 10.1142/S1088424605000617
192. “Adsorption Characteristics of Tripodal-Thiol-Functionalized Porphyrins on Gold,” Wei, L.; Tiznado, H.; Liu, G.; Padmaja, K.; Lindsey, J. S.; Zaera, F.; Bocian, D. F. J. Phys. Chem. B 2005, 109, 23963–23971. DOI: 10.1021/jp0537005
196. “Porphyrin Dyads Bearing Carbon Tethers for Studies of High-Density Molecular Charge Storage on Silicon Surfaces,” Thamyongkit, P.; Yu, L.; Padmaja, K.; Jiao, J.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2006, 71, 1156–1171. DOI: 10.1021/jo0522761
198. “Diverse porphyrin dimers as candidates for high-density charge-storage molecules,” Lysenko, A. B.; Thamyongkit, P.; Schmidt, I.; Diers, J. R.; Bocian, D. F.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2006, 10, 22–32. DOI: 10.1142/S1088424606000041
200. “Investigation of Stepwise Covalent Synthesis on a Surface Yielding Porphyrin-Based Multicomponent Architectures,” Schmidt, I.; Jiao, J.; Thamyongkit, P.; Sharada, D. S.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2006, 71, 3033–3050. DOI: 10.1021/jo052650x
203. “Stepwise Formation and Characterization of Covalently Linked Multiporphyrin-Imide Architectures on Si(100),” Jiao, J.; Anariba, F.; Tiznado, H.; Schmidt, I.; Lindsey, J. S.; Zaera, F.; Bocian, D. F. J. Am. Chem. Soc. 2006, 128, 6965–6974. DOI: 10.1021/ja060906q
204. “Triple-Decker Sandwich Compounds Bearing Compact Triallyl Tripods for Molecular Information Storage Applications,” Padmaja, K.; Youngblood, W. J.; Wei, L.; Bocian, D. F.; Lindsey, J. S. Inorg. Chem. 2006, 45, 5479–5492. DOI: 10.1021/ic060387s
218. “A Bipodal-Tethered Porphyrin for Attachment to Silicon Surfaces in Studies of Molecular Information Storage,” Schmidt, I.; Jiao, J.; Bocian, D. F.; Lindsey, J. S. J. Nanosci. Nanotechnol. 2008, 8, 4813–4817. DOI: 10.1166/jnn.2008.IC85
222. “Characterization of Porphyrin Surface Orientation in Monolayers on Au(111) and Si(100) Using Spectroscopically Labeled Molecules,” Jiao, J.; Thamyongkit, P.; Schmidt, I.; Lindsey, J. S.; Bocian, D. F. J. Phys. Chem. C 2007, 111, 12693–12704. 10.1021/jp073824c
231. “Synthesis of porphyrins for metal deposition studies in molecular information storage applications,” Kulikov, O. V.; Schmidt, I.; Muresan, A. Z.; Lee, M. A.-P.; Bocian, D. F.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2007, 11, 699–712. DOI: 10.1142/S1088424607000801
237. “Effects of Counterion Mobility, Surface Morphology, and Charge Screening on the Electron-Transfer Rates of Porphyrin Monolayers,” Jiao, J.; Nordlund, E.; Lindsey, J. S.; Bocian, D. F. J. Phys. Chem. C 2008, 112, 6173–6180. DOI: 10.1021/jp800123u
238. “Metal–Molecule Interactions Upon Deposition of Copper Overlayers on Reactively Functionalized Porphyrin Monolayers on Si(100),” Anariba, F.; Schmidt, I.; Muresan, A. Z.; Lindsey, J. S.; Bocian, D. F. Langmuir 2008, 24, 6698–6704. DOI: 10.1021/la800472c
241. “Comprehensive Characterization of Hybrid Junctions Comprised of a Porphyrin Monolayer Sandwiched Between a Coinage Metal Overlayer and a Si(100) Substrate,” Anariba, F.; Tiznado, H.; Diers, J. R.; Schmidt, I.; Muresan, A. Z.; Lindsey, J. S.; Zaera, F.; Bocian, D. F. J. Phys. Chem. C 2008, 112, 9474–9485. DOI: 10.1021/jp802428y
248. “Comparison of Electron-Transfer Rates for Metal- versus Ring-Centered Redox Processes of Porphyrins in Monolayers on Au(111),” Jiao, J.; Schmidt, I.; Taniguchi, M.; Lindsey, J. S.; Bocian, D. F. Langmuir 2008, 24, 12047–12053. DOI: 10.1021/la8019843
274. “Activation Energies for Oxidation of Porphyrin Monolayers Anchored to Au(111),” Jiao, J.; Taniguchi, M.; Lindsey, J. S.; Bocian, D. F. Langmuir 2010, 26, 15718–15721. DOI: 10.1021/la102802n
281. "Encoding Isotopic Watermarks in Molecular Electronic Materials as an Anti-Counterfeiting Strategy. Application to Porphyrins for Information Storage," Lindsey, J. S.; Thamyongkit, P.; Taniguchi, M.; Bocian, D. F. J. Porphyrins Phthalocyanines 2011, 15, 505–516. DOI: 10.1142/S1088424611003458
282. "Molecules for Charge-Based Information Storage," Lindsey, J. S.; Bocian, D. F. Acc. Chem. Res. 2011, 44, 638–650. DOI: 10.1021/ar200107x
362. “Characterization of Hydroporphyrins Covalently Attached to Si(100),” Jiao, J.; Miao, Y.; Holten, D.; Lindsey, J. S.; Bocian, D. F. J. Porphyrins Phthalocyanines 2017, 21, 453–464. DOI: 10.1142/S1088424617500547
B2. “Synthetic Approaches Toward Molecular Devices,” Lindsey, J. S. In Molecular Electronics-Science and Technology, Aviram, A. Ed., Engineering Foundation (New York), 1989, 221–227.
B11. “Charge-Retention Characteristics of Self-Assembled Monolayers of “Molecular-Wire” Linked Porphyrins on Gold,” Roth, K. M.; Liu, Z.; Gryko, D. T.; Clausen, C.; Lindsey, J. S.; Bocian, D. F.; Kuhr, W. G. Molecules as Components of Electronic Devices; ACS Symposium Series 844; American Chemical Society: Washington, DC, 2003, pp 51–61.
Optoelectronic gates
43. “Molecular Optoelectronic Gates,” Wagner, R. W.; Lindsey, J. S.; Seth, J.; Palaniappan, V.; Bocian, D. F. J. Am. Chem. Soc. 1996, 118, 3996–3997. DOI: 10.1021/ja9602657
102. “Mechanisms of Excited-State Energy-Transfer Gating in Linear versus Branched Multiporphyrin Arrays,” Lammi, R. K.; Wagner, R. W.; Ambroise, A.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Phys. Chem. B 2001, 105, 5341–5352. DOI: 10.1021/jp010857y
103. “Design and Synthesis of Porphyrin-Based Optoelectronic Gates,” Ambroise, A.; Wagner, R. W.; Rao, P. D.; Riggs, J. A.; Hascoat, P.; Diers, J. R.; Seth, J.; Lammi, R. K.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Chem. Mater. 2001, 13, 1023–1034. DOI: 10.1021/cm000773m
Origin of life
256. “Simple Formation of an Abiotic Porphyrinogen in Aqueous Solution,” Lindsey, J. S.; Ptaszek, M.; Taniguchi, M. Orig. Life Evol. Biosph. 2009, 39, 495–515. DOI: 10.1007/s11084-009-9168-3
276. “Abiotic Formation of Uroporphyrinogen and Coproporphyrinogen from Acyclic Reactants,” Lindsey, J. S.; Chandrashaker, V.; Taniguchi, M.; Ptaszek, M. New J. Chem. 2011, 35, 65–75. (Cover art for the issue containing paper 276) DOI: 10.1039/C0NJ00716A
289. "Tandem Combinatorial Model for the Prebiogenesis of Diverse Tetrapyrrole Macrocycles," Taniguchi, M.; Soares, A. R. M.; Chandrashaker, V.; Lindsey, J. S. New J. Chem. 2012, 36, 1057–1069. DOI: 10.1039/C2NJ21050A
290. "Self-organization of tetrapyrrole constituents to give a photoactive protocell," Soares, A. R. M.; Taniguchi, M.; Chandrashaker, V.; Lindsey, J. S. Chem. Sci. 2012, 3, 1963–1974. DOI: 10.1039/C2SC01120D
292. “Primordial Oil Slick and the Formation of Hydrophobic Tetrapyrrole Macrocycles,” Soares, A. R. M.; Taniguchi, M.; Chandrashaker, V.; Lindsey, J. S. Astrobiol. 2012, 12, 1055–1068. DOI: 10.1089/ast.2012.0857
293. “Competing Knorr and Fischer-Fink Pathways to pyrroles in neutral aqueous solution,” Chandrashaker, V.; Taniguchi, M.; Ptaszek, M.; Lindsey, J. S. Tetrahedron 2012, 68, 6957–6967. DOI: 10.1016/j.tet.2012.05.080
300. “Expanded Combinatorial Formation of Porphyrin Macrocycles in Aqueous Solution Containing Vesicles. A Prebiotic Model,” Soares, A. R. M.; Taniguchi, M.; Chandrashaker, V.; Lindsey, J. S. New J. Chem. 2013, 37, 1073–1086. DOI: 10.1039/C3NJ41041B
301. “Aqueous-Membrane Partitioning of ß-Substituted Porphyrins Encompassing Diverse Polarity,” Soares, A. R. M.; Thanaiah, Y.; Taniguchi, M.; Lindsey, J. S. New J. Chem. 2013, 37, 1087–1097. DOI: 10.1039/C3NJ41042K
306. "Catalytic Diversification Upon Metal Scavenging in a Prebiotic Model for Formation of Tetrapyrrole Macrocycles," Soares, A. R. M.; Anderson, D. R.; Chandrashaker, V.; Lindsey, J. S. New J. Chem. 2013, 37, 2716–2732. DOI: 10.1039/C3NJ00498H
336. "Complexity in Structure-Directed Prebiotic Chemistry. Effect of a Defective Competing Reactant in Tetrapyrrole Formation," Deans, R. M.; Chandrashaker, V.; Taniguchi, M.; Lindsey, J. S. New J. Chem. 2015, 39, 8273–8281. DOI: 10.1039/c5nj01474c
338. "Paley’s Watchmaker Analogy and Prebiotic Synthetic Chemistry in Surfactant Assemblies. Formaldehyde Scavenging by Pyrroles Leading to Porphyrins as a Case Study," Alexy, E. J.; Hintz, C. W.; Hughes, H. M.; Taniguchi, M.; Lindsey, J. S. Org. Biomol. Chem. 2015, 13, 10025–10031. DOI: 10.1039/c5ob01409c
340. "The Porphobilinogen Conundrum in Prebiotic Routes to Tetrapyrrole Macrocycles," Taniguchi, M.; Ptaszek, M.; Chandrashaker, V.; Lindsey, J. S. Orig. Life Evol. Biosph. 2017, 93–119. DOI: 10.1007/s11084-016-9506-1
342. "Complexity in Structure-Directed Prebiotic Chemistry. Unexpected Compositional Richness from Competing Reactants in Tetrapyrrole Formation," Deans, R. M.; Taniguchi, M.; Chandrashaker, V.; Ptaszek, M.; Chambers, D. R.; Soares, A. R. M.; Lindsey, J. S. New J. Chem. 2016, 40, 6421–6433. DOI: 10.1039/C6NJ00543H
343. "Complexity in Structure-Directed Prebiotic Chemistry. Reaction Bifurcation of a β-Diketone in Tetrapyrrole Formation," Deans, R. M.; Taniguchi, M.; Chandrashaker, V.; Ptaszek, M.; Lindsey, J. S. New J. Chem. 2016, 40, 6434–6440. DOI: 10.1039/C6NJ00545D
346. "Scope and limitations of two model prebiotic routes to tetrapyrrole macrocycles," Taniguchi, M.; Deans, R. M.; Chandrashaker, V.; Ptaszek, M.; Lindsey, J. S. New J. Chem. 2016, 40, 7445–7455. DOI: 10.1039/C6NJ01423B
348. "Synthesis of diverse acyclic precursors to pyrroles for studies of prebiotic routes to tetrapyrrole macrocycles," Chandrashaker, V.; Ptaszek, M.; Taniguchi, M.; Lindsey, J. S. New J. Chem. 2016, 40, 8786–8808. DOI: 10.1039/C6NJ02048H
B12. “Enumeration of Isomers of Substituted Tetrapyrrole Macrocycles: From Classical Problems in Biology to Modern Combinatorial Libraries,” Taniguchi, M.; Lindsey, J. S. in Handbook of Porphyrin Science; Kadish, K. M.; Smith, K. M.; Guilard, R., Eds.; World Scientific: Singapore, 2012, Vol. 23, pp 1–80.
Outreach
391. "Green Plants, Red Glow – Looking at Chlorophyll’s Red Fluorescence as an Exercise in Exploring Photosynthesis, Agriculture, and Global Ecology," Nguyen, K.-U.; Ratchford, A. R.; Painter, J. L.; Polmanteer, R.; Norcross, A. E.; Lindsey, J. S. Science Scope 2021, 44(6), 56–63. (July/August issue) https://www.nsta.org/science-scope/science-scope-julyaugust-2021-0/green-plants-red-glow
Palladium Coupling Methods
41. “Synthesis of Ethyne-Linked or Butadiyne-Linked Porphyrin Arrays Using Mild, Copper-Free, Pd-Mediated Coupling Reactions,” Wagner, R. W.; Johnson, T. E.; Li, F.; Lindsey, J. S. J. Org. Chem. 1995, 60, 5266–5273. DOI: 10.1021/jo00121a052
80. “Investigation and Refinement of Palladium-Coupling Conditions for the Synthesis of Diarylethyne-Linked Multiporphyrin Arrays,” Wagner, R. W.; Ciringh, Y.; Clausen, C.; Lindsey, J. S. Chem. Mater. 1999, 11, 2974–2983. DOI: 10.1021/cm9903529
128. “Glaser-Mediated Synthesis and Photophysical Characterization of Diphenylbutadiyne-Linked Porphyrin Dyads,” Youngblood, W. J.; Gryko, D. T.; Lammi, R. K.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2002, 67, 2111–2117. DOI: 10.1021/jo016150p
Panchromatic Chromophores
308. "Distinct Photophysical and Electronic Characteristics of Strongly Coupled Dyads Containing a Perylene Accessory Pigment and a Porphyrin, Chlorin, or Bacteriochlorin," Wang, J.; Yang, E.; Diers, J. R.; Niedzwiedzki, D. M.; Kirmaier, C.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2013, 117, 9288–9304. DOI: 10.1021/jp405004d
325. "Panchromatic Absorbers for Solar Light-Harvesting," Alexy, E. J.; Yuen, J. M.; Chandrashaker, V.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Chem. Commun. 2014, 50, 14512–14515. DOI: 10.1039/C4CC06853J
347. "Panchromatic chromophore–tetrapyrrole light-harvesting arrays constructed from bodipy, perylene, terrylene, porphyrin, chlorin, and bacteriochlorin building blocks," Hu, G.; Liu, R.; Alexy, E. J.; Mandal, A. K.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2016, 40, 8032–8052. DOI: 10.1039/C6NJ01782G
350. "Tuning the Electronic Structure and Properties of Perylene–Porphyrin–Perylene Panchromatic Absorbers," Amanpour, J.; Hu, G.; Alexy, E. J.; Mandal, A. K.; Kang, H. S.; Yuen, J. M.; Diers, J. R.; Lindsey, J. S.; Holten, D.; Bocian, D. F. J. Phys. Chem. A 2016, 120, 7434–7450. DOI: 10.1021/acs.jpca.6b06857
366. “Tailoring Panchromatic Absorption and Excited-State Dynamics of Tetrapyrrole–Chromophore (Bodipy, Rylene) Arrays – The Interplay of Orbital Mixing and Configuration Interaction,” Mandal, A. K.; Diers, J. R.; Niedzwiedzki, D. M.; Hu, G.; Liu, R.; Alexy, E. J.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Am. Chem. Soc. 2017, 139, 17547–17564. DOI: 10.1021/jacs.7b09548
372. “Synthesis of arrays containing porphyrin, chlorin, and perylene-imide constituents for panchromatic light-harvesting and charge separation,” Hu, G.; Kang, H. S.; Mandal, A. K.; Roy, A.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. RSC Adv. 2018, 8, 23854–23874. DOI: 10.1039/C8RA04052D
374. “Origin of Panchromaticity in Multichromophore–Tetrapyrrole Arrays,” Yuen, J.; Diers, J. R.; Alexy, E. J.; Roy, A.; Mandal, A. K.; Kang, H. S.; Niedzwiedzki, D. M.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. A 2018, 122, 7181–7201. DOI: 10.1021/acs.jpca.8b06815
416. “Electronic Structure and Excited-State Dynamics of Rylene–Tetrapyrrole Panchromatic Absorbers,” Rong, J.; Magdaong, N. C. M.; Taniguchi, M.; Diers, J. R.; Niedzwiedzki, D. M.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. A 2021, 125, 7900–7919. DOI: 10.1021/acs.jpca.1c05771
429. “Balancing Panchromatic Absorption and Multistep Charge Separation in a Compact Molecular Architecture,” Roy, A.; Magdaong, N. C. M.; Jing, H.; Rong, J.; Diers, J. R.; Kang, H. S.; Mandal, A. K.; Niedzwiedzki, D. M.; Taniguchi, M.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. A 2022, 126, 9353–9365. DOI: 10.1021/acs.jpca.2c06040
430. “Panchromatic Absorbers Tethered for Bioconjugation or Surface Attachment,” Liu, R.; Rong, J.; Wu, Z.; Taniguchi, M.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Molecules 2022, 27, 6501. DOI: 10.3390/molecules27196501
433. “Investigation of a Bacteriochlorin-containing Pentad for Panchromatic Light-Harvesting and Charge Separation,” Jing, H.; Magdaong, N. C. M.; Diers, J. R.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Phys. Chem. Chem. Phys. 2023, 25, 1781–1798. DOI: 10.1039/D2CP05400K
PhotochemCAD
58. “PhotochemCAD. A Computer-Aided Design and Research Tool in Photochemistry and Photobiology,” Du, H.; Fuh, R.-C. A.; Li, J.; Corkan, L. A.; Lindsey, J. S. Photochem. Photobiol. 1998, 68, 141–142. DOI: 10.1111/j.1751-1097.1998.tb02480.x
180. “PhotochemCAD 2. A Refined Program with Accompanying Spectral Databases for Photochemical Calculations,” Dixon, J. M.; Taniguchi, M.; Lindsey, J. S. Photochem. Photobiol. 2005, 81, 212–213. DOI: 10.1111/j.1751-1097.2005.tb01544.x
301. “Aqueous-Membrane Partitioning of ß-Substituted Porphyrins Encompassing Diverse Polarity,” Soares, A. R. M.; Thanaiah, Y.; Taniguchi, M.; Lindsey, J. S. New J. Chem. 2013, 37, 1087–1097. DOI: 10.1039/C3NJ41042K
363. “PhotochemCAD 3: Diverse Modules for Photophysical Calculations with Access to Multiple Spectral Databases,” Taniguchi, M.; Du, H.; Lindsey, J. S. Photochem. Photobiol. 2018, 277–289. DOI: 10.1111/php.12862
364. “Database of Absorption and Fluorescence Spectra of >300 Common Compounds for use in PhotochemCAD,” Taniguchi, M.; Lindsey, J. S. Photochem. Photobiol. 2018, 290–327. DOI: 10.1111/php.12860
379. “Developing a user community in the photosciences: a website for spectral data and access to PhotochemCAD,” Guo, Y.; Xu, Z.; Norcross, A. E.; Taniguchi, M.; Lindsey, J. S. Proc. SPIE 2019, 10893, 108930O. DOI: 10.1117/12.2508077
389. "Absorption and fluorescence spectra of organic compounds from 40 sources: archives, repositories, databases, and literature search engines," Taniguchi, M.; Lindsey, J. S. Proc. SPIE 2020, 11256, 112560J. DOI: 10.1117/12.2542859
390. "Analysis of Wikipedia pageviews to identify popular chemicals," Cao, Y.; Mehta, H.; Norcross, A. E.; Taniguchi, M.; Lindsey, J. S. Proc. SPIE 2020, 11256, 112560I. DOI: 10.1117/12.2542835
398. "Absorption and Fluorescence Spectral Database of Chlorophylls and Analogues," Taniguchi, M.; Lindsey, J. S. Photochem. Photobiol. 2021, 97, 136–165. DOI: 10.1111/php.13319
405. "PhotochemCAD spectra viewer for web-based visualization of absorption and fluorescence spectra," Wu, Z.; Kittinger, A.; Norcross, A. E.; Taniguchi, M.; Lindsey, J. S. Proc. SPIE 2021, 11660, 116600I. DOI: 10.1117/12.2577840
409. "Tolyporphins A–R, unusual tetrapyrrole macrocycles in a cyanobacterium from Micronesia, assessed quantitatively from the culture HT-58-2," O’Donnell, T. J.; Gurr, J. R.; Dai, J.; Taniguchi, M.; Williams, P. G.; Lindsey, J. S. New J. Chem. 2021, 45, 11481–11494. DOI: 10.1039/D1NJ02108G
418. “Beyond Green with Synthetic Chlorophylls – Connecting Structural Features with Spectral Properties,” Taniguchi, M.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Photochem. Photobiol. C 2022, 52, 100513. DOI: 10.1016/j.jphotochemrev.2022.100513
426. “Phyllobilins – Bioactive Natural Products Derived from Chlorophyll – Plant Origins, Structures, Absorption Spectra, and Biomedical Properties,” Karg, C. A.; Taniguchi, M.; Lindsey, J. S.; Moser, S. Planta Medica 2023, 89, 637–662.DOI: 10.1055/a-1955-4624
428. “Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations,” Taniguchi, M.; LaRocca, C.; Bernat, J. D.; Lindsey, J. S. J. Nat. Prod. 2023, 86, 1087–1119. DOI: 10.1021/acs.jnatprod.2c00720
435. "Absorption and Fluorescence Spectra of Open-chain Tetrapyrrole Pigments – Bilirubins, Biliverdins, Phycobilins, and Synthetic Analogues,” Taniguchi, M.; Lindsey, J. S. J. Photochem. Photobiol. C: Photochem. Rev. 2023, 55, 100585. DOI: 10.1016/j.jphotochemrev.2023.100585
438. “Digitization of Print-based Absorption and Fluorescence Spectra – Extracting Clarity from Clutter,” Taniguchi, M.; Wu, Z.; Sterling, C. D.; Lindsey, J. S. Proc. SPIE 2023, 12398, 1239806. DOI: 10.1117/12.2651694
449. “Light-Scattering in Absorption Spectra: A Literature Survey of Examples and Corrections,” Taniguchi, M.; Lindsey, J. S.; Proc. SPIE 2024, 12862, 128620B. DOI: 10.1117/12.3000407
454. “Appropriate Handling of Fluorescence Spectra for Accurate Spectral Overlap (J) Values in Förster Energy-Transfer (FRET) Calculations,” Taniguchi, M.; Du, H.; Lindsey, J. S. Proc. SPIE 2024, 13083, 130831J. https://spie.org/future-sensing-technologies/presentation/Appropriate-handling-of-fluorescence-spectra-for-accurate-spectral-overlap-J/13083-60#_=_
462. "Acquisition of Absorption and Fluorescence Spectral Data Using Chatbots,” Taniguchi, M.; Lindsey, J. S. Digit. Discov. 2025, 4, 21–34. DOI: 10.1039/D4DD00255E
Photochemistry (electron transfer)
3. “Excited State Porphyrin-Quinone Interactions at 10 Å Separation,” Lindsey, J. S.; Mauzerall, D. C.; Linschitz, H. J. Am. Chem. Soc. 1983, 105, 6528–6529. DOI: 10.1021/ja00359a049
5. “Coenzyme Models 40. Spectral and Reactivity Studies of Roseoflavin Analogues: Correlation between Reactivity and Spectral Parameters,” Shinkai, S.; Kameoka, K.; Honda, N.; Ueda, K.; Manabe, O.; Lindsey, J. Bioorg. Chem. 1986, 14, 119–133. DOI: 10.1016/0045-2068(86)90022-2
19. “Electron Tunneling in a Cofacial Zinc Porphyrin-Quinone Cage Molecule: Novel Temperature and Solvent Dependence,” Delaney, J. K.; Mauzerall, D. C.; Lindsey, J. S. J. Am. Chem. Soc. 1990, 112, 957–963. DOI: 10.1021/ja00159a008
32. “Synthesis of Amphipathic Porphyrins and Their Photoinduced Electron Transfer Reactions at the Lipid Bilayer-Water Interface,” Hwang, K. C.; Mauzerall, D.; Wagner, R. W.; Lindsey, J. S. Photochem. Photobiol. 1994, 59, 145–151. DOI: 10.1111/j.1751-1097.1994.tb05014.x
77. “An Artificial Photosynthetic Antenna-Reaction Center Complex,” Kuciauskas, D.; Liddell, P. A.; Lin, S.; Johnson, T. E.; Weghorn, S. J.; Lindsey, J. S.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am. Chem. Soc. 1999, 121, 8604–8614. DOI: 10.1021/ja991255j
121. “Efficient Energy Transfer and Electron Transfer in an Artificial Photosynthetic Antenna-Reaction Center Complex,” Kodis, G.; Liddell, P. A.; de la Garza, L.; Clausen, P. C.; Lindsey, J. S.; Moore, A. L.; Moore, T. A.; Gust, D. J. Phys. Chem. A 2002, 106, 2036–2048. DOI: 10.1021/jp012133s
Porphyrin synthesis
1-flask
6. “Synthesis of Tetraphenylporphyrins Under Very Mild Conditions,” Lindsey, J. S.; Hsu, H. C.; Schreiman, I. C. Tetrahedron Lett. 1986, 27, 4969–4970. DOI: 10.1016/S0040-4039(00)85109-6
7. “Rothemund and Adler-Longo Reactions Revisited: Synthesis of Tetraphenylporphyrins Under Equilibrium Conditions,” Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.; Kearney, P. C.; Marguerettaz, A. M. J. Org. Chem. 1987, 52, 827–836. DOI: 10.1021/jo00381a022
8. “An Improved Synthesis of Tetramesitylporphyrin,” Wagner, R. W.; Lawrence, D. S.; Lindsey, J. S. Tetrahedron Lett. 1987, 28, 3069–3070. DOI: 10.1016/S0040-4039(00)96287-7
14. “Investigation of the Synthesis of Ortho-Substituted Tetraphenylporphyrins,” Lindsey, J. S.; Wagner, R. W. J. Org. Chem. 1989, 54, 828–836. DOI: 10.1021/jo00265a021
21. “Synthesis of facially-encumbered porphyrins. An approach to light-harvesting antenna complexes,” Wagner, R. W.; Breakwell, B. V.; Ruffing, J.; Lindsey, J. S. Tetrahedron Lett. 1991, 32, 1703–1706. DOI: 10.1016/S0040-4039(00)74308-5
22. “Self-assembly of molecular devices containing a ferrocene, a porphyrin, and a quinone in a triple macrocyclic architecture,” Wagner, R. W.; Brown, P. A.; Johnson, T. E.; Lindsey, J. S. J. Chem. Soc., Chem. Commun. 1991, 1463–1466. DOI: 10.1039/C39910001463
31. “Investigation of a Synthesis of meso-Porphyrins Employing High Concentration Conditions and an Electron Transport Chain for Aerobic Oxidation,” Lindsey, J. S.; MacCrum, K. A.; Tyhonas, J. S.; Chuang, Y.-Y. J. Org. Chem. 1994, 59, 579–587. DOI: 10.1021/jo00082a014
33. “Porphyrin building blocks for modular construction of bioorganic model systems,” Lindsey, J. S.; Prathapan, S.; Johnson, T. E.; Wagner, R. W. Tetrahedron 1994, 50, 8941–8968. DOI: 10.1016/S0040-4020(01)85364-3
52. “Investigation of the one-flask synthesis of porphyrins bearing meso-linked straps of variable length, rigidity, and redox activity,” Wagner, R. W.; Johnson, T. E.; Lindsey, J. S. Tetrahedron 1997, 53, 6755–6790. DOI: 10.1016/S0040-4020(97)00327-X
53. “Investigation of phthalocyanine catalysts for the aerobic synthesis of meso-substituted porphyrins,” Ravikanth, M.; Achim, C.; Tyhonas, J. S.; Münck, E.; Lindsey, J. S. J. Porphyrins Phthalocyanines 1997, 1, 385–394. DOI: 10.1002/(SICI)1099-1409(199710)1:4<385::AID-JPP42>3.0.CO;2-I
54. “Beneficial effects of salts on an acid-catalyzed condensation leading to porphyrin formation,” Li, F.; Yang, K.; Tyhonas, J. S.; MacCrum, K. A.; Lindsey, J. S. Tetrahedron 1997, 53, 12339–12360. DOI: 10.1016/S0040-4020(97)00770-9
63. “Investigation of Cocatalysis Conditions using an Automated Microscale Multireactor Workstation: Synthesis of meso-Tetramesitylporphyrin,” Wagner, R. W.; Li, F.; Du, H.; Lindsey, J. S. Org. Process Res. Dev. 1999, 3, 28–37. DOI: 10.1021/op9800459
66. “N-Confused Tetraphenylporphyrin and Tetraphenylsapphyrin Formation in One-Flask Syntheses of Tetraphenylporphyrin,” Geier, G. R., III; Lindsey, J. S. J. Org. Chem. 1999, 64, 1596–1603. DOI: 10.1021/jo982068r
86. “An Efficient One-Flask Synthesis of N-Confused Tetraphenylporphyrin,” Geier, G. R., III; Haynes, D. M.; Lindsey, J. S. Org. Lett. 1999, 1, 1455–1458. DOI: 10.1021/ol9910114
99. “A Survey of Acid Catalysts for Use in Two-Step, One-Flask Syntheses of Meso-Substituted Porphyrinic Macrocycles,” Geier, G. R., III; Ciringh, Y.; Li, F.; Haynes, D. M.; Lindsey, J. S. Org. Lett. 2000, 2, 1745–1748. DOI: 10.1021/ol005917h
105. "Investigation of porphyrin-forming reactions. Part 1. Pyrrole + aldehyde oligomerization in two-step, one-flask syntheses of meso-substituted porphyrins," Geier, G. R., III; Lindsey, J. S. J. Chem. Soc., Perkin Trans. 2 2001, 677–686. DOI: 10.1039/B009088N
106. “Investigation of porphyrin-forming reactions. Part 2. Examination of the reaction course in two-step, one-flask syntheses of meso-substituted porphyrins,” Geier, G. R., III; Lindsey, J. S. J. Chem. Soc., Perkin Trans. 2 2001, 687–700. DOI: 10.1039/B009092L
117. “Investigation of acid cocatalysis in syntheses of tetraphenylporphyrin,” Geier, G. R., III; Riggs, J. A.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2001, 5, 681–690. DOI: 10.1002/jpp.380
129. “Effects of diverse acid catalysts on the reaction course in the two-step one-flask synthesis of meso-tetraphenylporphyrin,” Geier, G. R., III; Lindsey, J. S. J. Porphyrins Phthalocyanines 2002, 6, 159–185. DOI: 10.1142/S1088424602000208
130. “Weakly Coupled Molecular Photonic Wires: Synthesis and Excited-State Energy-Transfer Dynamics,” Ambroise, A.; Kirmaier, C.; Wagner, R. W.; Loewe, R. S.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2002, 67, 3811–3826. DOI: 10.1021/jo025561i
262. “Synthetic Routes to meso-Patterned Porphyrins,” Lindsey, J. S. Acc. Chem. Res. 2010, 43, 300–311. DOI: 10.1021/ar900212t
B1. “Synthesis and Electron-Transfer Studies of Conjugated p-Electron Systems. Model Systems for Molecular Computation Studies,” Staley, S. W.; Eliasson, B.; Kearney, P. C.; Schreiman, I. C.; Lindsey, J. S. In "Molecular Electronic Devices,” 3rd Ed. Carter, F. L.; Siatkowski, R. E.; Wohltjen, H., Eds.; Elsevier (North Holland), 1988, 543–554.
B5. “The Synthesis of Meso-Substituted Porphyrins,” Lindsey, J. S. In Metalloporphyrins Catalyzed Oxidations, Montanari, F.; Casella, L., Eds., Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994, pp 49–86.
B10. “Synthesis of meso-Substituted Porphyrins,” Lindsey, J. S. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, CA, 2000; Vol. 1, pp 45–118.
Combinatorics
289. "Tandem Combinatorial Model for the Prebiogenesis of Diverse Tetrapyrrole Macrocycles," Taniguchi, M.; Soares, A. R. M.; Chandrashaker, V.; Lindsey, J. S. New J. Chem. 2012, 36, 1057–1069. DOI: 10.1039/C2NJ21050A
283. "Virtual Libraries of Tetrapyrrole Macrocycles. Combinatorics, Isomers, Product Distributions, and Data Mining," Taniguchi, M.; Du, H.; Lindsey, J. S. J. Chem. Inf. Model. 2011, 51, 2233–2247. DOI: 10.1021/ci200240e
290. "Self-organization of tetrapyrrole constituents to give a photoactive protocell," Soares, A. R. M.; Taniguchi, M.; Chandrashaker, V.; Lindsey, J. S. Chem. Sci. 2012, 3, 1963–1974. DOI: 10.1039/C2SC01120D
291. "Diversity, Isomer Composition, and Design of Combinatorial Libraries of Tetrapyrrole Macrocycles," Taniguchi, M.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2012, 16, 1–13. DOI: 10.1142/S1088424612004628
300. “Expanded Combinatorial Formation of Porphyrin Macrocycles in Aqueous Solution Containing Vesicles. A Prebiotic Model,” Soares, A. R. M.; Taniguchi, M.; Chandrashaker, V.; Lindsey, J. S. New J. Chem. 2013, 37, 1073–1086. DOI: 10.1039/C3NJ41041B
301. “Aqueous-Membrane Partitioning of ß-Substituted Porphyrins Encompassing Diverse Polarity,” Soares, A. R. M.; Thanaiah, Y.; Taniguchi, M.; Lindsey, J. S. New J. Chem. 2013, 37, 1087–1097. DOI: 10.1039/C3NJ41042K
B12. “Enumeration of Isomers of Substituted Tetrapyrrole Macrocycles: From Classical Problems in Biology to Modern Combinatorial Libraries,” Taniguchi, M.; Lindsey, J. S. in Handbook of Porphyrin Science; Kadish, K. M.; Smith, K. M.; Guilard, R., Eds.; World Scientific: Singapore, 2012, Vol. 23, pp 1–80.
stepwise (ABCD)
40. “Synthetic approaches to regioisomerically pure porphyrins bearing four different meso-substituents,” Lee, C.-H.; Li, F.; Iwamoto, K.; Dadok, J.; Bothner-By, A. A.; Lindsey, J. S. Tetrahedron 1995, 51, 11645–11672. DOI: 10.1016/0040-4020(95)00704-C
48. “Synthesis of Linear Amphipathic Porphyrin Dimers and Trimers: An Approach to Bilayer Lipid Membrane Spanning Porphyrin Arrays,” Nishino, N.; Wagner, R. W.; Lindsey, J. S. J. Org. Chem. 1996, 61, 7534–7544. DOI: 10.1021/jo9611576
61. “Trans-Substituted porphyrin building blocks bearing Iodo and ethynyl groups for applications in bioorganic and materials chemistry,” Ravikanth, M.; Strachan, J.-P.; Li, F.; Lindsey, J. S. Tetrahedron 1998, 54, 7721–7734. DOI: 10.1016/S0040-4020(98)00408-6
68. “Investigation of Conditions Giving Minimal Scrambling in the Synthesis of Trans-Porphyrins from Dipyrromethanes and Aldehydes,” Littler, B. J.; Ciringh, Y.; Lindsey, J. S. J. Org. Chem. 1999, 64, 2864–2872. DOI: 10.1021/jo982452o
76. “Synthesis of β-substituted porphyrin building blocks and conversion to diphenylethyne-linked porphyrin dimers,” Balasubramanian, T.; Lindsey, J. S. Tetrahedron 1999, 55, 6771–6784. DOI: 10.1016/S0040-4020(99)00339-7
81. “Rational Synthesis of Trans-Substituted Porphyrin Building Blocks Containing One Sulfur or Oxygen Atom in Place of Nitrogen at a Designated Site,” Cho, W.-S.; Kim, H.-J.; Littler, B. J.; Miller, M. A.; Lee, C.-H.; Lindsey, J. S. J. Org. Chem. 1999, 64, 7890–7901. DOI: 10.1021/jo9909305
87. “Efficient Synthesis of Monoacyl Dipyrromethanes and Their Use in the Preparation of Sterically Unhindered trans-Porphyrins,” Rao, P. D.; Littler, B. J.; Geier, G. R., III; Lindsey, J. S. J. Org. Chem. 2000, 65, 1084–1092. DOI: 10.1021/jo9915473
88. “Rational Synthesis of meso-Substituted Porphyrins Bearing One Nitrogen Heterocyclic Group,” Gryko, D.; Lindsey, J. S. J. Org. Chem. 2000, 65, 2249–2252. DOI: 10.1021/jo9918100
93. “Rational Syntheses of Porphyrins Bearing up to Four Different Meso Substituents,” Rao, P. D.; Dhanalekshmi, S.; Littler, B. J.; Lindsey, J. S. J. Org. Chem. 2000, 65, 7323–7344. DOI: 10.1021/jo000882k
107. “Investigation of porphyrin-forming reactions. Part 3. The origin of scrambling in dipyrromethane + aldehyde condensations yielding trans-A2B2-tetraarylporphyrins,” Geier, G. R., III; Littler, B. J.; Lindsey, J. S. J. Chem. Soc., Perkin Trans. 2 2001, 701–711. DOI: 10.1039/B009098K
108. “Investigation of porphyrin-forming reactions. Part 4. Examination of the reaction course in syntheses of porphyrins via dipyrromethanecarbinols,” Geier, G. R., III; Littler, B. J.; Lindsey, J. S. J. Chem. Soc., Perkin Trans. 2 2001, 712–718. DOI: 10.1039/B009101O
119. “A survey of acid catalysts in dipyrromethanecarbinol condensations leading to meso-substituted porphyrins,” Geier, G. R., III; Callinan, J. B.; Rao, P. D.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2001, 5, 810–823. DOI: 10.1002/jpp.387
134. “Acidolysis of intermediates used in the preparation of core-modified porphyrinic macrocycles,” Chevalier, F.; Geier, G. R., III; Lindsey, J. S. J. Porphyrins Phthalocyanines 2002, 6, 186–197. DOI: 10.1142/S108842460200021X
144. “Formation of Porphyrins in the Presence of Acid-Labile Metalloporphyrins. A New Route to Mixed-Metal Multiporphyrin Arrays,” Speckbacher, M.; Yu, L.; Lindsey, J. S. Inorg. Chem. 2003, 42, 4322–4337. DOI: 10.1021/ic026206d
165. “A New Route to meso-Formyl Porphyrins,” Balakumar, A.; Muthukumaran, K.; Lindsey, J. S. J. Org. Chem. 2004, 69, 5112–5115. DOI: 10.1021/jo049819b
167. “Effects of aldehyde or dipyrromethane substituents on the reaction course leading to meso-substituted porphyrins,” Geier, G. R., III; Lindsey, J. S. Tetrahedron 2004, 60, 11435–11444. DOI: 10.1016/j.tet.2004.09.081
183. “Direct Synthesis of Palladium Porphyrins from Acyldipyrromethanes,” Sharada, D. S.; Muresan, A. Z.; Muthukumaran, K.; Lindsey, J. S. J. Org. Chem. 2005, 70, 3500–3510. DOI: 10.1021/jo050120v
185. “1,9-Bis(N,N-dimethylaminomethyl)dipyrromethanes in the synthesis of porphyrins bearing one or two meso substituents,” Fan, D.; Taniguchi, M.; Yao, Z.; Dhanalekshmi, S.; Lindsey, J. S. Tetrahedron 2005, 61, 10291–10302. DOI: 10.1016/j.tet.2005.08.028
188. “Imine-substituted dipyrromethanes in the synthesis of porphyrins bearing one or two meso substituents,” Taniguchi, M.; Balakumar, A.; Fan, D.; McDowell, B. E.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2005, 9, 554–574. DOI: 10.1142/S1088424605000678
195. “Investigation of Streamlined Syntheses of Porphyrins Bearing Distinct Meso Substituents,” Zaidi, S. H. H.; Fico, R. M., Jr.; Lindsey, J. S. Org. Process Res. Dev. 2006, 10, 118–134. DOI: 10.1021/op050193g
199. “Nearly Chromatography-Free Synthesis of the A3B-Porphyrin 5-(4-Hydroxymethylphenyl)-10,15,20-tri-p-tolylporphinatozinc(II),” Zaidi, S. H. H.; Loewe, R. S.; Clark, B. A.; Jacob, M. J.; Lindsey, J. S. Org. Process Res. Dev. 2006, 10, 304–314. DOI: 10.1021/op0502553
208. “Masked Imidazolyl-Dipyrromethanes in the Synthesis of Imidazole-Substituted Porphyrins,” Bhaumik, J.; Yao, Z.; Borbas, K. E.; Taniguchi, M.; Lindsey, J. S. J. Org. Chem. 2006, 71, 8807–8817. DOI: 10.1021/jo061461r
216. “Direct Synthesis of Magnesium Porphine via 1-Formyldipyrromethane,” Dogutan, D. K.; Ptaszek, M.; Lindsey, J. S. J. Org. Chem. 2007, 72, 5008–5011. DOI: 10.1021/jo070532z
224. “New Route to ABCD-porphyrins via Bilanes,” Dogutan, D. K.; Zaidi, S. H. H.; Thamyongkit, P.; Lindsey, J. S. J. Org. Chem. 2007, 72, 7701–7714. DOI: 10.1021/jo701294d
246. “Design and Synthesis of Water-Soluble Bioconjugatable trans-AB-Porphyrins,” Muresan, A. Z.; Lindsey, J. S. Tetrahedron 2008, 64, 11440–11448. DOI: 10.1016/j.tet.2008.08.096
262. “Synthetic Routes to meso-Patterned Porphyrins,” Lindsey, J. S. Acc. Chem. Res. 2010, 43, 300–311. DOI: 10.1021/ar900212t
281. "Encoding Isotopic Watermarks in Molecular Electronic Materials as an Anti-Counterfeiting Strategy. Application to Porphyrins for Information Storage," Lindsey, J. S.; Thamyongkit, P.; Taniguchi, M.; Bocian, D. F. J. Porphyrins Phthalocyanines 2011, 15, 505–516. DOI: 10.1142/S1088424611003458
Process chemistry
63. “Investigation of Cocatalysis Conditions using an Automated Microscale Multireactor Workstation: Synthesis of meso-Tetramesitylporphyrin,” Wagner, R. W.; Li, F.; Du, H.; Lindsey, J. S. Org. Process Res. Dev. 1999, 3, 28–37. DOI: 10.1021/op9800459
150. “A Scalable Synthesis of Meso-Substituted Dipyrromethanes,” Laha, J. K.; Dhanalekshmi, S.; Taniguchi, M.; Ambroise, A.; Lindsey, J. S. Org. Process Res. Dev. 2003, 7, 799–812. DOI: 10.1021/op034083q
191. “Refined Synthesis of 2,3,4,5-Tetrahydro-1,3,3-trimethyldipyrrin, a Deceptively Simple Precursor to Hydroporphyrins,” Ptaszek, M.; Bhaumik, J.; Kim, H.-J.; Taniguchi, M.; Lindsey, J. S. Org. Process Res. Dev. 2005, 9, 651–659. DOI: 10.1021/op050087e
195. “Investigation of Streamlined Syntheses of Porphyrins Bearing Distinct Meso Substituents,” Zaidi, S. H. H.; Fico, R. M., Jr.; Lindsey, J. S. Org. Process Res. Dev. 2006, 10, 118–134. DOI: 10.1021/op050193g
199. “Nearly Chromatography-Free Synthesis of the A3B-Porphyrin 5-(4-Hydroxymethylphenyl)-10,15,20-tri-p-tolylporphinatozinc(II),” Zaidi, S. H. H.; Loewe, R. S.; Clark, B. A.; Jacob, M. J.; Lindsey, J. S. Org. Process Res. Dev. 2006, 10, 304–314. DOI: 10.1021/op0502553
SCNPs
378. “Single-Polymer–Single-Cargo Strategy Packages Hydrophobic Fluorophores in Aqueous Solution with Retention of Inherent Brightness,” Liu, R.; Lindsey, J. S. ACS Macro Lett. 2019, 8, 79–83. Erratum: ACS Macro Lett. 2019, 8, 154–154. DOI: 10.1021/acsmacrolett.8b00907
382. “Self-assembly with fluorescence readout in a free base dipyrrin–polymer triggered by metal ion binding in aqueous solution,” Liu, R.; Vairaprakash, P.; Lindsey, J. S. New J. Chem. 2019, 43, 9711–9724. DOI: 10.1039/C9NJ01787A
400. "Aqueous solubilization of hydrophobic tetrapyrrole macrocycles by attachment to an amphiphilic single-chain nanoparticle (SCNP)," Liu, R.; Liu, S.; Hu, G.; Lindsey, J. S. New J. Chem. 2020, 44, 21293–21308. DOI: 10.1039/D0NJ04413J
403. "Single-Fluorophore Single-Chain Nanoparticle Undergoes Fluorophore-Driven Assembly with Fluorescence Features Retained in Physiological Milieu," Liu, S.; Rong, J.; Liu, R.; Lindsey, J. S. ACS Appl. Polym. Mater. 2021, 3, 1767–1776. DOI: 10.1021/acsapm.0c01313
Self-assembly
1. “Increased Yield of a Desired Isomer by Equilibria Displacement on Binding to Silica Gel, Applied to meso-Tetrakis(o-aminophenyl)Porphyrin,” Lindsey, J. S. J. Org. Chem. 1980, 45, 5215. DOI: 10.1021/jo01313a042
20. “Self-Assembly in Synthetic Routes to Molecular Devices. Biological Principles and Chemical Perspectives: A Review,” Lindsey, J. S. New J. Chem. 1991, 15, 153–180. DOI: 10.1002/chin.199138328
22. “Self-assembly of molecular devices containing a ferrocene, a porphyrin, and a quinone in a triple macrocyclic architecture,” Wagner, R. W.; Brown, P. A.; Johnson, T. E.; Lindsey, J. S. J. Chem. Soc., Chem. Commun. 1991, 1463–1466. DOI: 10.1039/C39910001463
148. “Excited-State Energy-Transfer Dynamics in Self-Assembled Triads Composed of Two Porphyrins and an Intervening Bis(dipyrrinato)metal Complex,” Yu, L.; Muthukumaran, K.; Sazanovich, I. V.; Kirmaier, C.; Hindin, E.; Diers, J. R.; Boyle, P. D.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Inorg. Chem. 2003, 42, 6629–6647. DOI: 10.1021/ic034559m
158. “Structural Control of the Excited-State Dynamics of Bis(dipyrrinato)zinc Complexes: Self-Assembling Chromophores for Light-Harvesting Architectures,” Sazanovich, I. V.; Kirmaier, C.; Hindin, E.; Yu, L.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Am. Chem. Soc. 2004, 126, 2664–2665. DOI: 10.1021/ja038763k
290. "Self-organization of tetrapyrrole constituents to give a photoactive protocell," Soares, A. R. M.; Taniguchi, M.; Chandrashaker, V.; Lindsey, J. S. Chem. Sci. 2012, 3, 1963–1974. DOI: 10.1039/C2SC01120D
300. “Expanded Combinatorial Formation of Porphyrin Macrocycles in Aqueous Solution Containing Vesicles. A Prebiotic Model,” Soares, A. R. M.; Taniguchi, M.; Chandrashaker, V.; Lindsey, J. S. New J. Chem. 2013, 37, 1073–1086. DOI: 10.1039/C3NJ41041B
335. "Self-assembled Light-Harvesting System from Chromophores in Lipid Vesicles," Sahin, T.; Harris, M. A.; Vairaprakash, P.; Niedzwiedzki, D. M.; Subramanian, V.; Shreve, A. P.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Phys. Chem. B 2015, 119, 10231–10243. DOI: 10.1021/acs.jpcb.5b04841
Structural chemistry
10. “Solution Conformation of a Porphyrin-Quinone Cage Molecule Determined by Dipolar Magnetic Field Effects in Ultra-High Field NMR,” Lisicki, M. A.; Mishra, P. K.; Bothner-By, A. A.; Lindsey, J. S. J. Phys. Chem. 1988, 92, 3400–3403. DOI: 10.1021/j100323a018
34. “Synthesis of porphyrins tailored with eight facially-encumbering groups. An approach to solid-state light-harvesting complexes,” Wagner, R. W.; Lindsey, J. S.; Turowska-Tyrk, I.; Scheidt, W. R. Tetrahedron 1994, 50, 11097–11112. DOI: 10.1016/S0040-4020(01)89413-8
44. “Molecular Dynamics of Covalently-Linked Multi-porphyrin Arrays,” Bothner-By, A. A.; Dadok, J.; Johnson, T. E.; Lindsey, J. S. J. Phys. Chem. 1996, 100, 17551–17557. DOI: 10.1021/jp961408e
169. “Structural Characterization of Modular Supramolecular Architectures in Solution,” Tiede, D. M.; Zhang, R.; Chen, L. X.; Yu, L.; Lindsey, J. S. J. Am. Chem. Soc. 2004, 126, 14054–14062. DOI: 10.1021/ja048209q
187. “Structural Control of the Photodynamics of Boron-Dipyrrin Complexes,” Kee, H. L.; Kirmaier, C.; Yu, L.; Thamyongkit, P.; Youngblood, W. J.; Calder, M. E.; Ramos, L.; Noll, B. C.; Bocian, D. F.; Scheidt, W. R.; Birge, R. R.; Lindsey, J. S.; Holten, D. J. Phys. Chem. B 2005, 109, 20433–20443. DOI: 10.1021/jp0525078
230. “Synthesis and Structural Properties of Porphyrin Analogues of Bacteriochlorophyll c,” Ptaszek, M.; Yao, Z.; Savithri, D.; Boyle, P. D.; Lindsey, J. S. Tetrahedron 2007, 63, 12629–12638. DOI: 10.1016/j.tet.2007.10.023
253. “Solution-State Conformational Ensemble of a Hexameric Porphyrin Array Characterized Using Molecular Dynamics and X-ray Scattering,” Mardis, K. L.; Sutton, H. M.; Zuo, X.; Lindsey, J. S.; Tiede, D. M. J. Phys. Chem. A 2009, 113, 2516–2523. DOI: 10.1021/jp808318x
260. “Synthesis and Photochemical Properties of 12-Substituted versus 13-Substituted Chlorins,” Mass, O.; Ptaszek, M.; Taniguchi, M.; Diers, J. R.; Kee, H. L.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2009, 74, 5276–5289. DOI: 10.1021/jo900706x
270. “Structural Studies of Sparsely Substituted Chlorins and Phorbines Establish Benchmarks for Changes in the Ligand Core and Framework of Chlorophyll Macrocycles,” Taniguchi, M.; Mass, O.; Boyle, P. D.; Tang, Q.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Mol. Structure 2010, 979, 27–45. DOI: 10.1016/j.molstruc.2010.05.035
275. “Structural Characteristics that Make Chlorophylls Green: Interplay of Hydrocarbon Skeleton and Substituents,” Mass, O.; Taniguchi, M.; Ptaszek, M.; Springer, J. W.; Faries, K. M.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2011, 35, 76–88. DOI: 10.1039/C0NJ00652A
394. "Crystal Structure of 1,9-Dibromo-5-phenyldipyrrin, Tetrapyrrole Synthesis Derivative and Free Base Ligand of BODIPY Building Blocks," O’Shea, D. F.; Sommer, R. D.; Taniguchi, M.; Lindsey, J. S. X-Ray Struct. Anal. Online 2020, 36, 21–22. DOI: 10.2116/xraystruct.36.21
395. "Fourfold alkyl wrapping of a Copper(II) Porphyrin Thwarts Macrocycle π–π stacking in a compact supramolecular package," Nalaoh, P.; Bureekaew, S.; Promarak, V.; Lindsey, J. S. Acta Cryst. C 2020, C76, 647–654. DOI: 10.1107/S2053229620007172
Supramolecular tetrapyrroles
13. “Molecular Recognition: Multipoint Contacts With New Sizes and Shapes,” Lindsey, J. S.; Kearney, P. C.; Duff, R. J.; Tjivikua, P. T.; Rebek, J. J. Am. Chem. Soc. 1988, 110, 6575–6577. DOI: 10.1021/ja00227a055
17. “Spectroscopic Characterization of Porphyrin Monolayer Assemblies,” Schick, G. A.; Schreiman, I. C.; Wagner, R. W.; Lindsey, J. S.; Bocian, D. F. J. Am. Chem. Soc. 1989, 111, 1344–1350. DOI: 10.1021/ja00186a030
230. “Synthesis and Structural Properties of Porphyrin Analogues of Bacteriochlorophyll c,” Ptaszek, M.; Yao, Z.; Savithri, D.; Boyle, P. D.; Lindsey, J. S. Tetrahedron 2007, 63, 12629–12638. DOI: 10.1016/j.tet.2007.10.023
232. “Soluble Precipitable Porphyrins for Use in Targeted Molecular Brachytherapy,” Yao, Z.; Borbas, K. E.; Lindsey, J. S. New J. Chem. 2008, 32, 436–451. DOI: 10.1039/B714127K
285. "De Novo Synthesis and Properties of Analogues of the Self-Assembling Chlorosomal Bacteriochlorophylls," Mass, O.; Pandithavidana, D. R.; Ptaszek, M.; Santiago, K.; Springer, J. W.; Jiao, J.; Tang, Q.; Kirmaier, C.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2011, 35, 2671–2690. DOI: 10.1039/C1NJ20611G
378. “Single-Polymer–Single-Cargo Strategy Packages Hydrophobic Fluorophores in Aqueous Solution with Retention of Inherent Brightness,” Liu, R.; Lindsey, J. S. ACS Macro Lett. 2019, 8, 79–83. Erratum: ACS Macro Lett. 2019, 8, 154–154. DOI: 10.1021/acsmacrolett.8b00907
382. “Self-assembly with fluorescence readout in a free base dipyrrin–polymer triggered by metal ion binding in aqueous solution,” Liu, R.; Vairaprakash, P.; Lindsey, J. S. New J. Chem. 2019, 43, 9711–9724. DOI: 10.1039/C9NJ01787A
400. "Aqueous solubilization of hydrophobic tetrapyrrole macrocycles by attachment to an amphiphilic single-chain nanoparticle (SCNP)," Liu, R.; Liu, S.; Hu, G.; Lindsey, J. S. New J. Chem. 2020, 44, 21293–21308. DOI: 10.1039/D0NJ04413J
403. "Single-Fluorophore Single-Chain Nanoparticle Undergoes Fluorophore-Driven Assembly with Fluorescence Features Retained in Physiological Milieu," Liu, S.; Rong, J.; Liu, R.; Lindsey, J. S. ACS Appl. Polym. Mater. 2021, 3, 1767–1776. DOI: 10.1021/acsapm.0c01313
Tetrapyrrole properties
4. “A Theoretical Investigation of the One-Photon and Two-Photon Properties of Porphyrins,” Masthay, M. B.; Findsen, L. A.; Pierce, B. M.; Bocian, D. F.; Lindsey, J. S.; Birge, R. R. J. Chem. Phys. 1986, 84, 3901–3915. DOI: 10.1063/1.450827
9. “Spin Density Distributions in meso-Alkyl/Aryl Hybrid Porphyrin Cation Radicals,” Atamian, M.; Wagner, R. W.; Lindsey, J. S.; Bocian, D. F. Inorg. Chem. 1988, 27, 1510–1512. DOI: 10.1021/ic00281a040
15. “Resonance Raman Spectra and Normal Coordinate Analysis of Reduced Porphyrins. I. Zinc(II) Tetraphenylporphyrin Anion,” Atamian, M.; Donohoe, R. J.; Lindsey, J. S.; Bocian, D. F. J. Phys. Chem. 1989, 93, 2236–2243. DOI: 10.1021/j100343a012
16. “Hindered Diffusion of Short-Chain Polystyrene and Porphyrins in Small Pores,” Kathawalla, I. A.; Anderson, J. L.; Lindsey, J. S. Macromolecules 1989, 22, 1215–1219. DOI: 10.1021/ma00193a037
17. “Spectroscopic Characterization of Porphyrin Monolayer Assemblies,” Schick, G. A.; Schreiman, I. C.; Wagner, R. W.; Lindsey, J. S.; Bocian, D. F. J. Am. Chem. Soc. 1989, 111, 1344–1350. DOI: 10.1021/ja00186a030
30. “Sequential protonation of meso-(p-(dimethylamino)phenyl)porphyrins: charge-transfer excited states producing hyperporphyrins,” Ojadi, E. C. A.; Linschitz, H.; Gouterman, M.; Walters, R. I.; Lindsey, J. S.; Wagner, R. W.; Droupadi, P. R.; Wang, W. J. Phys. Chem. 1993, 97, 13192–13197. DOI: 10.1021/j100152a025
67. “Ground and Excited State Electronic Properties of Halogenated Tetraarylporphyrins. Tuning the Building Blocks for Porphyrin-based Photonic Devices,” Yang, S. I.; Seth, J.; Strachan, J.-P.; Gentemann, S.; Kim, D.; Holten, D.; Lindsey, J. S.; Bocian, D. F. J. Porphyrins Phthalocyanines 1999, 3, 117–147. DOI: 10.1002/(SICI)1099-1409(199902)3:2<117::AID-JPP110>3.0.CO;2-X
221. “Tracking Electrons and Atoms in a Photoexcited Metalloporphyrin by X-ray Transient Absorption Spectroscopy,” Chen, L. X.; Zhang, X.; Wasinger, E. C.; Attenkofer, K.; Jennings, G.; Muresan, A. Z.; Lindsey, J. S. J. Am. Chem. Soc. 2007, 129, 9616–9618. DOI: 10.1021/ja072979v
228. “Ultrafast Stimulated Emission and Structural Dynamics in Nickel Porphyrins,” Zhang, X.; Wasinger, E. C.; Muresan, A. Z.; Attenkofer, K.; Jennings, G.; Lindsey, J. S.; Chen, L. X. J. Phys. Chem. A 2007, 111, 11736–11742. DOI: 10.1021/jp0751763
351. “Photophysical Properties and Electronic Structure of Porphyrins Bearing Zero to Four meso-Phenyl Substituents: New Insights Into Seemingly Well Understood Tetrapyrroles,” Mandal, A. K.; Taniguchi, M.; Diers, J. R.; Niedzwiedzki, D. M.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. A 2016, 120, 9719–9731. DOI: 10.1021/acs.jpca.6b09483
399. "Photophysical Properties and Electronic Structure of Zinc(II) Porphyrins Bearing 0–4 meso-Phenyl Substituents: Zinc Porphine to Zinc Tetraphenylporphyrin (ZnTPP)," Magdaong, N. C. M.; Taniguchi, M.; Diers, J. R.; Niedzwiedzki, D. M.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Phys. Chem. A 2020, 124, 7776–7794. DOI: 10.1021/acs.jpca.0c06841
402. "Comprehensive review of photophysical parameters (ε, Φf, τS) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis," Taniguchi, M.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Photochem. Photobiol. C: Photochem. Rev. 2021, 46, 100401. DOI: 10.1016/j.jphotochemrev.2020.100401
406. "In-Situ, Protein-Mediated Generation of a Photochemically Active Chlorophyll Analog in a Mutant Bacterial Photosynthetic Reaction Center," Magdaong, N. C. M.; Buhrmaster, J. C.; Faries, K. M.; Liu, H.; Tira, G. A.; Lindsey, J. S.; Hanson, D. K.; Holten, D.; Laible, P. D.; Kirmaier, C. Biochemistry 2021, 60, 1260–1275. DOI: 10.1021/acs.biochem.1c00137
410. “A perspective on the redox properties of tetrapyrrole macrocycles,” Diers, J. R.; Kirmaier, C.; Taniguchi, M.; Lindsey, J. S.; Bocian, D. F.; Holten, D. Phys. Chem. Chem. Phys. 2021, 23, 19130–19140. DOI: 10.1039/D1CP01943K
Tetrapyrrole Architectures
Facially encumbered
14. “Investigation of the Synthesis of Ortho-Substituted Tetraphenylporphyrins,” Lindsey, J. S.; Wagner, R. W. J. Org. Chem. 1989, 54, 828–836. DOI: 10.1021/jo00265a021
21. “Synthesis of facially-encumbered porphyrins. An approach to light-harvesting antenna complexes,” Wagner, R. W.; Breakwell, B. V.; Ruffing, J.; Lindsey, J. S. Tetrahedron Lett. 1991, 32, 1703–1706. DOI: 10.1016/S0040-4039(00)74308-5
33. “Porphyrin building blocks for modular construction of bioorganic model systems,” Lindsey, J. S.; Prathapan, S.; Johnson, T. E.; Wagner, R. W. Tetrahedron 1994, 50, 8941–8968. DOI: 10.1016/S0040-4020(01)85364-3
34. “Synthesis of porphyrins tailored with eight facially-encumbering groups. An approach to solid-state light-harvesting complexes,” Wagner, R. W.; Lindsey, J. S.; Turowska-Tyrk, I.; Scheidt, W. R. Tetrahedron 1994, 50, 11097–11112. DOI: 10.1016/S0040-4020(01)89413-8
236. “Design, Synthesis, and Photophysical Properties of Water-Soluble Chlorins,” Borbas, K. E.; Chandrashaker, V.; Muthiah, C.; Kee, H. L.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2008, 73, 3145–3158. DOI: 10.1021/jo7026728
246. “Design and Synthesis of Water-Soluble Bioconjugatable trans-AB-Porphyrins,” Muresan, A. Z.; Lindsey, J. S. Tetrahedron 2008, 64, 11440–11448. DOI: 10.1016/j.tet.2008.08.096
395. "Fourfold alkyl wrapping of a Copper(II) Porphyrin Thwarts Macrocycle π–π stacking in a compact supramolecular package," Nalaoh, P.; Bureekaew, S.; Promarak, V.; Lindsey, J. S. Acta Cryst. C 2020, C76, 647–654. DOI: 10.1107/S2053229620007172
452. “Molecular Designs with PEG Motifs for Water-Solubilization of Sparsely Substituted Porphyrins,” Cao, P.-L. D.; Wu, Z.; Nalaoh, P.; Lindsey, J. S. New J. Chem. 2024, 48, 11140–11152. DOI: 10.1039/D4NJ01178C
Strapped
22. “Self-assembly of molecular devices containing a ferrocene, a porphyrin, and a quinone in a triple macrocyclic architecture,” Wagner, R. W.; Brown, P. A.; Johnson, T. E.; Lindsey, J. S. J. Chem. Soc., Chem. Commun. 1991, 1463–1466. DOI: 10.1039/C39910001463
32. “Synthesis of Amphipathic Porphyrins and Their Photoinduced Electron Transfer Reactions at the Lipid Bilayer-Water Interface,” Hwang, K. C.; Mauzerall, D.; Wagner, R. W.; Lindsey, J. S. Photochem. Photobiol. 1994, 59, 145–151. DOI: 10.1111/j.1751-1097.1994.tb05014.x
52. “Investigation of the one-flask synthesis of porphyrins bearing meso-linked straps of variable length, rigidity, and redox activity,” Wagner, R. W.; Johnson, T. E.; Lindsey, J. S. Tetrahedron 1997, 53, 6755–6790. DOI: 10.1016/S0040-4020(97)00327-X
Swallowtail
163. “Swallowtail Porphyrins: Synthesis, Characterization and Incorporation into Porphyrin Dyads,” Thamyongkit, P.; Speckbacher, M.; Diers, J. R.; Kee, H. L.; Kirmaier, C.; Holten, D.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2004, 69, 3700–3710. DOI: 10.1021/jo049860e
164. “Porphyrin Architectures Tailored for Studies of Molecular Information Storage,” Carcel, C. M.; Laha, J. K.; Loewe, R. S.; Thamyongkit, P.; Schweikart, K.-H.; Misra, V.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2004, 69, 6739–6750. DOI: 10.1021/jo0498260
171. “Synthesis of Swallowtail-Substituted Multiporphyrin Rods,” Thamyongkit, P.; Lindsey, J. S. J. Org. Chem. 2004, 69, 5796–5799. DOI: 10.1021/jo049348t
185. “1,9-Bis(N,N-dimethylaminomethyl)dipyrromethanes in the synthesis of porphyrins bearing one or two meso substituents,” Fan, D.; Taniguchi, M.; Yao, Z.; Dhanalekshmi, S.; Lindsey, J. S. Tetrahedron 2005, 61, 10291–10302. DOI: 10.1016/j.tet.2005.08.028
188. “Imine-substituted dipyrromethanes in the synthesis of porphyrins bearing one or two meso substituents,” Taniguchi, M.; Balakumar, A.; Fan, D.; McDowell, B. E.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2005, 9, 554–574. DOI: 10.1142/S1088424605000678
197. “Bioconjugatable Porphyrins Bearing a Compact Swallowtail Motif for Water Solubility,” Borbas, K. E.; Mroz, P.; Hamblin, M. R.; Lindsey, J. S. Bioconjugate Chem. 2006, 17, 638–653. DOI: 10.1021/bc050337w
217. “Meso-¹³C-Labeled Porphyrins for Studies of Ground-State Hole Transfer in Multiporphyrin Arrays,” Thamyongkit, P.; Muresan, A. Z.; Diers, J. R.; Holten, D.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2007, 72, 5207–5217. DOI: 10.1021/jo070593x
232. “Soluble Precipitable Porphyrins for Use in Targeted Molecular Brachytherapy,” Yao, Z.; Borbas, K. E.; Lindsey, J. S. New J. Chem. 2008, 32, 436–451. DOI: 10.1039/B714127K
233. “A Compact Water-Soluble Porphyrin Bearing An Iodoacetamido Bioconjugatable Site,” Borbas, K. E.; Kee, H. L.; Holten, D.; Lindsey, J. S. Org. Biomol. Chem. 2008, 6, 187–194. DOI: 10.1039/B715072E
236. “Design, Synthesis, and Photophysical Properties of Water-Soluble Chlorins,” Borbas, K. E.; Chandrashaker, V.; Muthiah, C.; Kee, H. L.; Holten, D.; Lindsey, J. S. J. Org. Chem. 2008, 73, 3145–3158. DOI: 10.1021/jo7026728
239. “Swallowtail Bacteriochlorins. Lipophilic Absorbers for the Near-Infrared,” Borbas, K. E.; Ruzié, C.; Lindsey, J. S. Org. Lett. 2008, 10, 1931–1934. DOI: 10.1021/ol800436u
304. "Synthetic Bacteriochlorins with Integral Spiro-piperidine Motifs," Reddy, K. R.; Lubian, E.; Pavan, M. P.; Kim, H.-J.; Yang, E.; Holten, D.; Lindsey, J. S. New J. Chem. 2013, 37, 1157–1173. DOI: 10.1039/C3NJ41161C
352. “Northern–Southern Route to Synthetic Bacteriochlorins,” Liu, Y.; Lindsey, J. S. J. Org. Chem. 2016, 81, 11882–11897. DOI: 10.1021/acs.joc.6b02334
357. “Synthesis and photophysical characterization of bacteriochlorins equipped with integral swallowtail substituents,” Liu, Y.; Allu, S.; Reddy, M. N.; Hood, D.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. New J. Chem. 2017, 41, 4360–4376. DOI: 10.1039/C7NJ00499K
463. “Conformational Analysis of Swallowtail Motifs in Porphyrins,” Cao, P.-L. D.; Chau Nguyen, K.; Nevzorov, A. A.; Jovanovic, M.; Nalaoh, P.; Lindsey, J. S. J. Org. Chem. 2025, 90, 146–157. DOI: 10.1021/acs.joc.4c02059.
Triple deckers
98. “Synthesis of Thiol-Derivatized Europium Porphyrinic Triple-Decker Sandwich Complexes for Multibit Molecular Information Storage,” Li, J.; Gryko, D.; Dabke, R. B.; Diers, J. R.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. J. Org. Chem. 2000, 65, 7379–7390. DOI: 10.1021/jo000490d
104. “Studies related to the design and synthesis of a molecular octal counter,” Gryko, D.; Li, J.; Diers, J. R.; Roth, K. M.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. J. Mater. Chem. 2001, 11, 1162–1180. DOI: 10.1039/b008224o
115. “Investigation of Rational Syntheses of Heteroleptic Porphyrinic Lanthanide (Europium, Cerium) Triple-Decker Sandwich Complexes,” Gross, T.; Chevalier, F.; Lindsey, J. S. Inorg. Chem. 2001, 40, 4762–4774. DOI: 10.1021/ic0101634
127. “Design, synthesis, and characterization of prototypical multistate counters in three distinct architectures,” Schweikart, K.-H.; Malinovskii, V. L.; Diers, J. R.; Yasseri, A. A.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. J. Mater. Chem. 2002, 12, 808–828. DOI: 10.1039/B108520D
135. “Comparison of Electron-Transfer and Charge-Retention Characteristics of Porphyrin-Containing Self-Assembled Monolayers Designed for Molecular Information Storage,” Roth, K. M.; Gryko, D. T.; Clausen, C.; Li, J.; Lindsey, J. S.; Kuhr, W. G.; Bocian, D. F. J. Phys. Chem. B 2002, 106, 8639–8648. DOI: 10.1021/jp025850a
151. “Synthesis and Characterization of Bis(S-acetylthio)-Derivatized Europium Triple-Decker Monomers and Oligomers,” Schweikart, K.-H.; Malinovskii, V. L.; Yasseri, A. A.; Li, J.; Lysenko, A. B.; Bocian, D. F.; Lindsey, J. S. Inorg. Chem. 2003, 42, 7431–7446. DOI: 10.1021/ic034730u
152. “Diverse Redox-Active Molecules Bearing O-, S-, or Se- Terminated Tethers for Attachment to Silicon in Studies of Molecular Information Storage,” Balakumar, A.; Lysenko, A. B.; Carcel, C.; Malinovskii, V. L.; Gryko, D. T.; Schweikart, K.-H.; Loewe, R. S.; Yasseri, A. A.; Liu, Z.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2004, 69, 1435–1443. (Cover art for the issue containing papers 152-155) DOI: 10.1021/jo034944t
155. “Diverse Redox-Active Molecules Bearing Identical Thiol-Terminated Tripodal Tethers for Studies of Molecular Information Storage,” Wei, L.; Padmaja, K.; Youngblood, W. J.; Lysenko, A. B.; Lindsey, J. S.; Bocian, D. F. J. Org. Chem. 2004, 69, 1461–1469. DOI: 10.1021/jo0349476
157. “Molecular Memories that Survive Silicon Device Processing and Real-World Operation,” Liu, Z.; Yasseri, A. A.; Lindsey, J. S.; Bocian, D. F. Science 2003, 302, 1543–1545. DOI: 10.1126/science.1090677
190. “Multistate molecular information storage using S-acetylthio-derivatized dyads of triple-decker sandwich coordination compounds,” Lysenko, A. B.; Malinovskii, V. L.; Kisari, P.; Wei, L.; Diers, J. R.; Bocian, D. F.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2005, 9, 491–508. DOI: 10.1142/S1088424605000617
204. “Triple-Decker Sandwich Compounds Bearing Compact Triallyl Tripods for Molecular Information Storage Applications,” Padmaja, K.; Youngblood, W. J.; Wei, L.; Bocian, D. F.; Lindsey, J. S. Inorg. Chem. 2006, 45, 5479–5492. DOI: 10.1021/ic060387s
Tolyporphins
356. “Photophysical Characterization of the Naturally Occurring Dioxobacteriochlorin Tolyporphin A and Synthetic Oxobacteriochlorin Analogues, ” Hood, D.; Niedzwiedzki, D. M.; Zhang, R.; Zhang, Y.; Dai, J.; Miller, E. S.; Bocian, D. F.; Williams, P. G.; Lindsey, J. S.; Holten, D. Photochem. Photobiol. 2017, 93, 1204–1215. DOI: 10.1111/php.12781
360. “Genome Sequence and Composition of A Tolyporphin-Producing Cyanobacterium–Microbial Community,” Hughes, R.-A.; Zhang, Y.; Zhang, R.; Williams, P. G.; Lindsey, J. S.; Miller, E. S. Appl. Environ. Microbiol. 2017, 83, e01068-17. DOI: 10.1128/AEM.01068-17
365. “Quantitation of Tolyporphins, Diverse Tetrapyrrole Secondary Metabolites with Chlorophyll-like Absorption, From a Filamentous Cyanobacterium–Microbial Community,” Zhang, Y.; Zhang, R.; Hughes, R.-A.; Dai, J.; Gurr, J. R.; Williams, P. G.; Miller, E. S.; Lindsey, J. S. Phytochem. Anal. 2017, 205–216. DOI: 10.1002/pca.2735
369. “Mass spectrometric detection of chlorophyll a and the tetrapyrrole secondary metabolite tolyporphin A in the filamentous cyanobacterium HT-58-2. Approaches to high-throughput screening of cyanobacteria,” Zhang, Y.; Zhang, R.; Nazari, M.; Bagley, M. C.; Miller, E. S.; Williams, P. G.; Muddiman, D. C.; Lindsey, J. S. J. Porphyrins Phthalocyanines 2017, 21, 759–768. DOI: 10.1142/S108842461750078X
373. “Genome sequence, metabolic properties and cyanobacterial attachment of Porphyrobacter sp. HT-58-2 isolated from a filamentous cyanobacterium–microbial consortium,” Hughes, R.-A.; Jin, X.; Zhang, Y.; Zhang, R.; Tran, S.; Williams, P. G.; Lindsey, J. S.; Miller, E. S. Microbiol. 2018, 164, 1229–1239. DOI: 10.1099/mic.0.000706
376. “Cellular localization of tolyporphins, unusual tetrapyrroles, in a microbial photosynthetic community determined using hyperspectral confocal fluorescence microscopy,” Barnhart-Dailey, M.; Zhang, Y.; Zhang, R.; Anthony, S. M.; Aaron, J. S.; Miller, E. S.; Lindsey, J. S.; Timlin, J. A. Photosyn. Res. 2019, 141, 259–271. DOI: 10.1007/s11120-019-00625-w
407. "Natural Product Gene Clusters in the Filamentous Nostocales Cyanobacterium HT-58-2," Jin, X.; Miller, E. S.; Lindsey, J. S. Life 2021, 11, 356. DOI: 10.3390/life11040356
408. "Considerations of the biosynthesis and molecular diversity of tolyporphins," Lindsey, J. S. New J. Chem. 2021, 45, 12097–12107. DOI: 10.1039/d1nj01761f
409. "Tolyporphins A–R, unusual tetrapyrrole macrocycles in a cyanobacterium from Micronesia, assessed quantitatively from the culture HT-58-2," O’Donnell, T. J.; Gurr, J. R.; Dai, J.; Taniguchi, M.; Williams, P. G.; Lindsey, J. S. New J. Chem. 2021, 45, 11481–11494. DOI: 10.1039/D1NJ02108G
411. “Fluorescence Assay for Tolyporphins Amidst Abundant Chlorophyll in Crude Cyanobacterial Extracts,” Nguyen, K.-U.; Zhang, R.; Taniguchi, M.; Lindsey, J. S. Photochem. Photobiol. 2021, 97, 1507–1515. DOI: 10.1111/php.13474
415. “Identification of Putative Biosynthetic Gene Clusters for Tolyporphins in Multiple Filamentous Cyanobacteria,” Jin, X.; Zhang, Y.; Zhang, R.; Nguyen, K.-U.; Lindsey, J. S.; Miller, E. S. Life 2021, 11, 758. DOI: 10.3390/life11080758
444. “Tolyporphins – Exotic Tetrapyrrole Pigments in a Cyanobacterium – A Review,” Nguyen, K.-U.; Zhang, Y.; Liu, Q.; Zhang, R.; Jin, X.; Taniguchi, M.; Miller, E. S.; Lindsey, J. S. Molecules 2023, 28, 6132. DOI: 10.3390/molecules28166132