Organized by Ernani Ribeiro Jr & Abdênago Barros
Next Speaker
Grupos compactos admitem estruturas de Lie-Poisson canônicas. Tais estruturas sempre têm a identidade como ponto singular. Em 1992, Cahen, Gutt e Rawnsley provaram que elas nunca são linearizáveis na identidade do grupo, exceto se o grupo é produto de cópias de SU(2). Neste seminário apresentaremos alguns resultados sobre a geometria de SU(2) e calcularemos explicitamente alguns de seus invariantes. Baseado em trabalho conjunto com H. Bursztyn.