Title: A barrier principle at infinity for varifolds with bounded mean curvature
Abstract: Click here!
Title: Concentration of mean exit times
Abstract: The mean exit time function, when defined on a narrow tubular neighborhood (called a delta-tube) around any equator of the sphere, increases without bound as the dimension increases. In contrast, when the same function is defined on geodesic balls, it tends to zero as the dimension grows. This shows that the mean exit time exhibits a kind of concentration phenomenon, often referred to as the fat equator effect, in the case of equatorial tubes.
A similar concentration behavior is observed when the mean exit time function is considered on tubes around closed, minimal hypersurfaces of a compact Riemannian manifold with Ricci curvature bounded below by (n−1). In this setting, a Brownian particle starting its random movement near such a hypersurface will remain close to it for increasingly longer periods as the dimension of the ambient manifold increases, eventually spending an infinite amount of time near the hypersurface in the limit.
Title: Métricas Críticas J-Einstein para Funcionais Curvatura Quadráticos
Abstract: Nesta apresentação será definido o conceito de métricas J-Einstein, o qual foi introduzido por Lin-Yaun e, como veremos, generalizam as métricas Bach-flat (tensor de Bach nulo) para variedades de dimensão 4. Destacamos que obtivemos alguns teoremas para métricas J-Einstein como ponto crítico do funcional curvatura quadrático envolvendo a curvatura de Ricci e a curvatura escalar, alguns deles estão na mesma direção dos resultados obtidos por Sheng-Wang sobre métricas Bach-flat no artigo [Bach-flat critical metrics for quadratic curvature functionals, Ann. Glob. Anal. Geom., 2018].
Title: Rigidity of compact quasi-Einstein manifolds with boundary
Abstract: It is known by the classical book "Einstein Manifolds" (Besse, 1984) that quasi-Einsteinmanifolds correspond to a base of a warped product Einstein metric. Another interesting motivation to investigate quasi-Einstein manifolds derives from the study of diffusion operators by Bakry and Emery (1985), which is linked to the theories of smooth metric measure space, static spaces and Ricci solitons. In this talk, we will show that a 3-dimensional simply connected compact quasi-Einstein manifold with boundary and constant scalar curvature must be isometric to either the standard hemisphere S^3_{+}, or the cylinder IxS^2 with product metric. For dimension n=4, we will show that a 4-dimensional simply connected compact quasi-Einsteinmanifold with boundary and constant scalar curvature is isometric to either the standard hemisphere S^4_+, or the cylinder I x S^3 with product metric, or the product space S^2_+ x S^2 with the product metric. This is a joint work with D. Zhou and E. Ribeiro Jr.
Title: GEOMETRIC AND ANALYTICAL RESULTS FOR ρ-EINSTEIN SOLITONS
Abstract: Na geometria Riemanniana, uma ferramenta muito relevante para investigar métricas canônicas são os fluxos geométricos. Ao longo dos anos, o estudo de singularidades e soluções de tais fluxos, em especial as soluções auto-similares, se mostrou de extrema importância para responder questões clássicas da geometria Riemanniana. Nesse contexto, destacamos o fluxo de Ricci-Bourguignon, que é uma perturbação por um termo de curvatura escalar do clássico Fluxo de Ricci. Nos últimos anos, muito tem sido desenvolvido visando melhorar o entendimento das soluções desse fluxo, principalmente em casos particulares, como, por exemplo, os sólitons de Ricci ou os sólitons de Schouten. Nosso objetivo principal nesta palestra é apresentar alguns resultados analíticos e geométricos das soluções autossimilares do fluxo de Ricci-Bourguignon, por exemplo, um resultado do tipo Lichnerowicz-Obata, bem como algumas estimativas de crescimento de volume.
Title: The min-max width of spheres associated to the distance function
Abstract: What one obtains when the min-max methods for the distance function are applied on the space of pairs of points of a Riemannian two-sphere? This question is studied in details in the present article. We show that the associated min-max width do not always coincide with half of the length of a simple closed geodesic which is the union of two minimizing geodesics with the same endpoints. Therefore, it is a new geometric invariant. We study the structure of the set of minimizing geodesics joining a pair of points realizing the width, and relationships between this invariant and the diameter. The extrinsic case of an embedded Riemannian sphere is also considered.
Organizing Committee:
Abdênago Barros (UFC)
Ernani Ribeiro Jr (UFC)
Support: