8th Grade SCIENCE
Mrs. Bartlett-Gaunt Lightning Hawks
8th Grade SCIENCE
Mrs. Bartlett-Gaunt Lightning Hawks
a.bartlett-gaunt@laschools.net photo credit: John Stein
2025-2026 PLANBOOK LINKS (also found in Google Classroom):
1A/2A
2B/3B
4 A/B
Lunch Help Sessions - I will hold lunch help sessions as needed, by appointment. These will be primarily for students who need to make up labs and/or assessments.
I do not assign specific science homework and Unit Science Folders stay in the classroom. However, folders may occasionally go home to complete absent work or if a student needs more time to complete an assignment. Once the unit is complete, students take them home!!! The first unit will be complete by the end of August.
August: Light & Matter
"How does a one-way mirror work? Though most everyone knows that one-way mirrors exist, having students model how they work turns out to be a very effective way to develop their thinking about how visible light travels and how we see images. Initial student models in this unit reveal a wide variety of ideas and explanations that motivate the unit investigations that help students figure out what is going on and lead them to a deeper understanding of the world around them.
A video of an experience with a one-way mirror, gets students to organize and write down their initial ideas and then they dig in to test those ideas and figure out what is really happening. Students build a scaled box model of what they saw in the video to test out their ideas. Using two boxes combined together with a one-way mirror in between the two, students vary the presence of light in the two boxes to figure out how a one-way mirror works and improve their initial models so they accurately explain how light is reflected and transmitted through materials and the basics of how these behaviors of light result in the images we see."
"Oh, no! I’ve dropped my phone! Most of us have experienced the panic of watching our phones slip out of our hands and fall to the floor. We’ve experienced the relief of picking up an undamaged phone and the frustration of the shattered screen. This common experience anchors learning in the Contact Forces unit as students explore a variety of phenomena to figure out, “Why do things sometimes get damaged when they hit each other?”
Student questions about the factors that result in a shattered cell phone screen lead them to investigate what is really happening to any object during a collision. They make their thinking visible with free-body diagrams, mathematical models, and system models to explain the effects of relative forces, mass, speed, and energy in collisions.
"In this unit, students develop ideas related to how sounds are produced, how they travel through media, and how they affect objects at a distance. Their investigations are motivated by trying to account for a perplexing anchoring phenomenon — a truck is playing loud music in a parking lot and the windows of a building across the parking lot visibly shake in response to the music.
They make observations of sound sources to revisit the K–5 idea that objects vibrate when they make sounds. They figure out that patterns of differences in those vibrations are tied to differences in characteristics of the sounds being made. They gather data on how objects vibrate when making different sounds to characterize how a vibrating object’s motion is tied to the loudness and pitch of the sounds they make. Students also conduct experiments to support the idea that sound needs matter to travel through, and they will use models and simulations to explain how sound travels through matter at the particle level."
"This unit launches with a slow-motion video of a speaker as it plays music. In the previous unit, students developed a model of sound. This unit allows students to investigate the cause of a speaker’s vibration in addition to the effect.
Students dissect speakers to explore the inner workings, and engineer homemade cup speakers to manipulate the parts of the speaker. They identify that most speakers have the same parts–a magnet, a coil of wire, and a membrane. Students investigate each of these parts to figure out how they work together in the speaker system. Along the way, students manipulate the components (e.g. changing the strength of the magnet, number of coils, direction of current) to see how this technology can be modified and applied to a variety of contexts, like MagLev trains, junkyard magnets, and electric motors."
"What keeps different cups or containers from warming up or cooling down? Students begin this unit by experimenting whether a new plastic cup sold by a store keeps a drink colder for longer than the regular plastic cup that comes free with the drink. Students find that the drink in the regular cup warms up more than the drink in the special cup. This prompts students to identify features of the cups that are different, such as the lid, walls, and hole for the straw, that might explain why one drink warms up more than the other.
In this unit, students investigate the different cup features they conjecture to explain the phenomenon, starting with the lid. They model how matter can enter or exit the cup via evaporation. However, they find that in a completely closed system, the liquid inside the cup still changes temperature. This motivates the need to trace the transfer of energy into the drink as it warms up. Through a series of lab investigations and simulations, students find two ways to transfer energy into the drink: (1) the absorption of light and (2) thermal energy from the warmer air around the drink. They are then challenged to design their own drink container that can perform as well as the store-bought container, following a set of design criteria and constraints."
"Students' conceptual understanding of chemical reactions for middle school science is foundational to much science learning. Understanding atomic level reactions is crucial for learning physical, life, earth, and space science. Even more importantly, they open up new windows of curiosity for students to see the world around them. By middle school, students are ready to take on the abstract nature of the interactions of atoms and molecules far too small to see.
To pique students’ curiosity and anchor the learning for the unit in the visible and concrete, students start with an experience of observing and analyzing a bath bomb as it fizzes and eventually disappears in the water. Their observations and questions about what is going on drive learning that digs into a series of related phenomena as students iterate and improve their models depicting what happens during chemical reactions for middle school science. By the end of the unit, students have a firm grasp on how to model simple molecules, know what to look for to determine if chemical reactions have occurred, and apply their knowledge to chemical reactions to show how mass is conserved when atoms are rearranged.
"This unit on Earth’s resources and human impact begins with students observing news stories and headlines of drought and flood events across the United States. Students gather evidence for how a change in temperature affects evaporation, precipitation, and other parts of Earth’s water system. They use evidence to support a scientific explanation that two climate variables (temperature and precipitation) are changing precipitation patterns in the case sites they investigated. Students figure out that the rising temperatures are caused by an imbalance in Earth’s carbon system, resulting in a variety of problems in different communities. The unit ends with students evaluating different kinds of solutions to these problems and how they are implemented in communities. Students work through a systematic evaluation process to consider (1) each solution’s potential to solve the carbon imbalance, (2) tradeoffs associated with solutions based on student-identified constraints, and (3) whether the solution in question makes sense for their community’s stakeholders."
This project assesses what students have learned about characteristic properties of substances - an important part of 8th grade science standards.
These properties help students determine how to separate the substances and then, how to identify them based on scientific evidence.
The project requires knowledge of safety protocols as well as NGSS practices of science and engineering:
1. Asking questions and defining problems
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data 5. Using mathematics and computational thinking
6. Constructing explanations and designing solutions
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information