З історії наукових поглядів на загальний устрій атома
Про те, що всі речовини складаються з надзвичайно дрібненьких, неподільних частинок, давньогрецькі філософи говорили та писали ще за 500 років до нашої ери. Ці частинки вони називали “атомами” тобто “неподільними” (грец. atomos – неподільний). Власне такими неподільними, атоми вважались до початку двадцятого століття. Лише в 1897 році відбулася подія, яка кардинально змінила історію атома. В цьому році, англійський фізик Джозеф Томсон (1856-1940) на основі аналізу багатьох експериментальних фактів, безумовно довів, що до складу будь якої речовини, а отже і до складу її атомів, входять дрібненькі, негативно заряджені частинки, які отримали назву електрони. Іншими словами, в 1897 було відкрито першу елементарну частинку – електрон (m=9,1·10-31кг; q0=e= -1,6·10-19Кл). При цьому стало ясно, що атом має певний внутрішній устрій. З’ясовуючи цей устрій, доречно сказати про те, а що ж власне знали вчені про атоми на початок 20-го століття. А знали вони наступне:
1. Атоми – частинки електронейтральні, однак такі, що за певних умов можуть перетворюватись на позитивно чи негативно заряджені іони;
2. Атоми – частинки стабільні та довговічні;
3. При енергетичному збуджені, атоми випромінюють світло, при цьому кожна різновидність атомів дає свій неповторний лінійчатий спектр;
4. До складу атомів входять електрони.
Аналізуючи вище наведені факти та спираючись на закони класичної фізики, Джозеф Томсон в 1902 році запропонував першу, науково обгрунтовану модель атома – модель Томсона. Згідно з цією моделлю, атом представляє собою кулю однорідної, позитивно зарядженої речовини, в якій міститься певна кількість легеньких, негативно заряджених електронів.
Модель Томсона цілком прийнятно (у всякому разі на якісному рівні) пояснювала всі відомі властивості атома. Дійсно. Згідно з цією моделлю, до складу атома входять електрони. За нормальних умов, атом Томсона є електронейтральним, тобто таким в якому загальний позитивний заряд кулястого тіла атома, вточності дорівнює загальному негативному заряду електронів. При цьому, втрачаючи або отримуючи електрони, атом легко перетворюється на відповідний іон. Атом Томсона представляє собою динамічно стійку та довговічну систему. Систему в якій електрони з одного боку взаємно відштовхуються, а з іншого – притягуються до центру атома тією силою яку створює позитивно заряджене тіло атома. В такій ситуації, електрони автоматично розташовуються в тих місцях де діючі на них сили електростатичного притягування та відштовхування зрівноважують ода одну.
На кінець, модель Томсона достатньо переконливо пояснювала механізм випромінювання світла та факт того, що кожна різновидність атомів дає свій неповторний лінійчатий спектр. Дійсно. Якщо атом знаходиться в енергетично незбудженому стані, то його електрони відносно нерухомі, а отже такі, що не створюють електромагнітних хвиль. При енергетичному ж збуджені, електрони починають здійснювати високочастотні коливання, які згідно з теорією Максвела створюють відповідні електромагнітні хвилі. А оскільки кожен атом має свої індивідуальні особливості, то відповідно індивідуальними є і частотні параметри коливань електронів, а отже і параметри того набору електромагнітних хвиль які випромінюються атомом.
Таким чином, запропонована Томсоном модель внутрішнього устрою атома, переконливо пояснювала всі його відомі властивості, і тому не безпідставно претендувала на загальне визнання. Однак наука стоїть на тому, що в ній критерієм істини є експеримент. А це означає, що в науці будь яка гіпотеза, в незалежності від того наскільки переконливою чи сумнівною вона виглядає, має бути експериментально перевіреною і відповідно підтвердженою чи спростованою. Яким же чином можна було перевірити внутрішній устрій атома в ті часи, коли сам факт існування атомів ще був під питанням? (Нагадаємо, що факт існування атомів (молекул) був безумовно доведений лише в 1908 році). Відповідь на це запитання дав англійський фізик Ернест Резерфорд (1871-1931).
В 1899 році, досліджуючи на передодні відкрите явище радіоактивності, Резерфорд експериментально встановив, що складовою частиною радіоактивного випромінювання є так зване α-випромінювання. При цьому він з’ясував, що α-випромінювання представляє собою потік швидких, масивних (m=4 а.о.м.), позитивно заряджених (q0=+2е) частинок. Власне ці α-частинки Резерфорд і вирішив застосувати в якості того інструменту який дозволить дослідити внутрішній устрій атома. Ідея Резерфорда була гранично простою: якщо на шляху направленого потоку α-частинок поставити тонкий шар речовини, то при взаємодії з атомами цієї речовини, α-частинки будуть змінювати траєкторію свого руху. Аналізуючи ці зміни, можна буде зробити певний висновок щодо внутрішнього устрою атома.
Потрібно зауважити, що в своїх експериментах, в якості досліджуваної речовини, Резерфорд обрав золото. Такий вибір пояснювався двома обставинами. По перше, атоми золота є достатньо масивними (m=197 а.о.м.), а отже такими які при взаємодії з α-частинкою (m=4 а.о.м.) не будуть “відскакувати” від неї, та додатково не впливатимуть на траєкторію руху цієї частинки. По друге, Резерфорд розумів, що в умовах його експерименту, шар досліджуваної речовини має бути гранично тонким. Адже якщо таких шарів буде багато, то α-частинки багаторазово взаємодіючи з атомами речовини та багаторазово змінюючи траєкторію свого руху, “намалюють” певну усереднену картинку яка не відображатиме закономірностей внутрішнього устрою атома. А золото було саме тим матеріалом, який з незапам’ятних часів вміли виготовляти у вигляді надтонких плівок (плівок, товщина яких близька до одного мікрона, тобто до 0,001мм).
Реалізуючи свої ідеї, Резерфорд в 1906 році створює прилад для дослідження внутрішнього устрою атома. Цей прилад представляє собою герметичний корпус в середині якого, в умовах глибокого вакууму знаходяться: контейнер з радіоактивною речовиною; тонкий шар золотої фольги; люмінісцируючий екран. Принцип дії цієї системи очевидно простий. З отвору радіоактивного контейнеру вилітають α-частинки. Пролітаючи через тонкий шар золота, вони певним чином взаємодіють з його атомами та потрапляють на люмінісцируючий екран. При цьому у відповідних точках екрану можна побачити певні світлові спалахи.
На які ж результати очікував Резерфорд виходячи з того, що модель Томсона є правильною? Перш за все Резерфорд розумів, що надлегкі електрони не можуть суттєво вплинути на поведінку масивних α-частинок (mα/me=7300). Ця поведінка визначальним чином залежатиме від взаємодії α-частинки з тією масивною, позитивно зарядженою речовиною яка утворює тіло атома. При цьому можливі три варіанти поведінки ?-частинок. 1) Якщо густина тіла атома є гранично малою (умовно кажучи, тіло атома є “газоподібним”), то всі α-частинки практично безперешкодно пролітатимуть через атоми речовини та потраплятимуть в центр екрану. 2) Якщо густина тіла атому є помірно великою (умовно кажучи, тіло атома є “рідким”), то всі α-частинки в процесі проходження через це тіло будуть гальмуватися та відповідним чином розсіюватись. А це означає, що потік α-частинок на екрані утворить однорідну пляму, діаметр якої залежатиме від густини тіла атома (чим більша густина, тим більша площа плями). 3) Якщо ж густина тіла атома є гранично великою (умовно кажучи, тіло атома є “твердим”), то при взаємодії з цим тілом, всі α-частинки відбиватимуться від нього.
Таким чином, якщо виходити з того, що модель Томсона є правильною, то в залежності від густини тієї речовини яка утворює тіло атома, Резерфорд мав би отримати один з наступних результатів: 1) всі α-частинки потрапляють в центр екрану; 2) всі α-частинки рівномірно розсіюються по певній частині екрану; 3) всі α-частинки відбиваються від золотої фольги.
Які ж результати отримав Резерфорд в дійсності? А ці результати були наступними. Переважна більшість α-частинок пролітаючи через фольгу потрапляли в центральну частину екрану. Приблизно десять відсотків α-частинок, пролітаючи через фольгу суттєво відхилялись та розсіювались по екрану. Деякі ж α-частинок (приблизно одна на десять тисяч) відбивались від фольги так, ніби наштовхувались на масивну тверду перешкоду. Дані результати безумовно вказували на те, що модель Томсона є неправильною. Ці результати можна було пояснити лише в тому випадку, якщо виходити з того, що в центрі атома знаходиться невелике за розміром, масивне, позитивно заряджене ядро.
Узагальнюючи результати багаторічних експериментальних досліджень, Резерфорд в 1911 році робить висновок: атом представляє собою електромеханічну систему, в центрі якої знаходиться масивне, позитивно заряджене ядро, навколо якого обертається певна кількість електронів. Запропоновану Резерфордом модель загального устрою атома, назвали планетарною моделлю атома.
Планетарна модель атома безумовно пояснювала результати дослідів Резерфорда і в цьому сенсі була безумовно достовірною. Однак, ця модель явно суперечила певним передбаченням теорії Максвела та деяким загально відомим експериментальним фактам. Дійсно. В планетарному атомі, електрон не може знаходитись в стані спокою. Адже з боку ядра на нього постійно діє певна електрична сила, яка прагне до того щоб електрон упав на ядро. Для того щоб не впасти на ядро, електрон повинен з певною швидкістю та відповідним доцентровим прискоренням (прискоренням для якого Fел=Fі) обертатись навколо нього. А обертаючись навколо ядра електрон, згідно з теорією Максвела, повинен випромінювати електромагнітну енергію. А випромінюючи цю енергію (втрачаючи енергію), електрон повинен наближатись до ядра та неминуче падати на нього. При цьому розрахунки показували, що тривалість життя планетарного атома не перевищує тисячних долей секунди. Експериментальні ж факти безумовно доводили, що атоми – частинки стабільні та довговічні.
Крім цього, вчені звернули увагу на ще один суперечливий факт. Його суть полягає в тому, що передбачене законами класичної фізики спіральне падіння електрона має супроводжуватись збільшенням частоти його обертання навколо атомного ядра. А це означає, що спектр випромінювання планетарного атома має бути таким, що певним неперервним чином змінюється. Насправді ж, кожна різновидність атомів випромінює свій незмінний лінійчатий спектр.
Таким чином, в фізиці виникла кризова ситуація: з одного боку, експериментальні факти безумовно доводили що планетарна модель атома є правильна. З іншого ж боку, експериментально підтверджена теорія Максвела наполягала на тому, що ця модель є не правильною. Вихід із цієї кризової ситуації запропонував в 1913 році данський фізик Нільс Бор. Бор розсудив так.
1) Якщо експериментальні факти безумовно доводять, що в центрі атома знаходиться масивне, позитивно заряджене ядро навколо якого обертається певна кількість електронів – значить, так воно і є.
2) Якщо експериментальні факти безумовно доводять, що в енергетично не збудженому стані, атом не випромінює світло – зачить, так воно і є.
3) Оскільки наші знання про суть тих процесів які відбуваються в атомі є досить поверхневими, то вирішення тих проблем які існують між планетарною моделлю атома та теорією Максвела, доцільно залишити на майбутнє.
Відразу ж зауважимо, що це майбутнє настало лише через десятиріччя. За це десятиріччя було створено квантову механіку, яка безумовно довела, що ніякого протиріччя між теорією Максвела та планетарною моделлю атома не існує. А існує наше не правильне розуміння суті того, що називається електроном. Адже коли ми стверджували, що в процесі обертання навколо ядра, електрон повинен випромінювати світло, то мали на увазі, що електрон, це така маленька негативно заряджена кулька яка обертається навколо атомного ядра. І якби така кулька дійсно оберталась навколо ядра, то вона б дійсно випромінювала світло та неминуче падала на ядро. Однак електрон, це не кулька, а певна елементарна частинка якій притаманні як корпускулярні так і хвильові властивості. При цьому в атомах речовини, електрон веде себе як певна хвиля, яка за відсутності енергетичного збудження і не повинна випромінювати світло. Втім, в 1913 році про всі ці обставини було невідомо. І тому Бор просто постулював, що в атомах речовини енергетично не збуджені електрони не випромінюють світло.
Та як би там не було, а намагаючись пояснити внутрішній устрій атома, Бор враховував наступні факти. 1) Планетарна модель атома є експериментально підтвердженою і тому правильною. 2) Атом – частинка стабільна та довговічна. 3) При енергетичному збуджені, атоми випромінюють світло, при цьому кожна різновидність атомів дає свій неповторний лінійчастий спектр. 4) Енергетично не збуджені атоми, не випромінюють світло.
Розмірковуючи над даними фактами, та прагнучи поєднати їх в єдине ціле, Бор приходить до розуміння того, що той лінійчатий спектр який створює енергетично збуджений атом, є певним відображенням тих внутрішніх процесів що відбуваються в цьому атомі. Він усвідомлює, що квантові властивості світла, це закономірний наслідок квантової поведінки електрона в атомі. Зважаючи на ці обставини та кількісно аналізуючи закономірності спектру атома водню, Нільс Бор в 1913 році формулює свої знамениті постулати. (Нагадаємо, в фізиці постулатами називають ті базові твердження, достовірність яких приймається без теоретичного доведення.)
Постулати Бора:
1. В атомі, електрони можуть знаходитись лише на певних, енергетично дозволених рівнях.
2. Перебуваючи на енергетично дозволеному рівні, електрон не випромінює світло.
3. При поглинанні зовнішньої енергії, електрон переходить на більш високий енергетичний рівень, а при падінні з цього рівня – випромінює відповідний квант світлової енергії.
Таким чином, згідно з теорією Бора, атом будь якої речовини представляє собою певну електро-механічну систему, яка складається з масивного, позитивно зарядженого ядра та легких, негативно заряджених електронів, і в якій електрони можуть знаходитись на лише певних, енергетично дозволених рівнях (стаціонарних орбітах). При цьому, за відсутності зовнішнього енергетичного збудження, електрони перебувають на найнижчих енергетично дозволених рівнях і не випромінюючи енергію, можуть перебувати на цих рівнях як завгодно довго. Поглинаючи зовнішню енергію, електрон перескакує на відповідний, більш високі енергетичний рівень. А падаючи з цього рівня – випромінює відповідний світловий фотон.
Потрібно зауважити, що теорія Бора пояснювала загальний устрій та «принцип дії» атома не лише на якісно-описовому рівні, а й на рівні точних кількісних розрахунків. Що правда, кількісні передбачення цієї теорії, в точності збувалися лише по відношенню до атома водню. Відносно ж інших, більш складних атомів, кількісні передбачення теорії Бора, експериментально не підтверджувались. Не підтверджувались головним чином тому, що створюючи свою теорію, Бор використовував ті інструменти (закони класичної фізики) які добре пояснювали поведінку куль, автомобілів та планет, але були практично не придатними для пояснення поведінки електронів. Умовно кажучи, Бор намагався відремонтувати мініатюрний наручний годинник, тими інструментами які були призначеними для ремонту вантажного автомобіля.
Та як би там не було, а теорія Бора стала визначним кроком на шляху розвитку науки. І не лише тому, що правильно пояснила загальний устрій та «принцип дії» атома. А й тому, що чітко окреслила той напрямок розвитку науки, який через десятиріччя призвів до створення сучасної квантової механіки.