Prof. Jan Madsen
Head of Section for Embedded Systems Engineering
Deputy Director of Department of Applied Mathematics and Computer Science (DTU Compute)
Technical University of Denmark
Prof. Marilyn Claire Wolf
Rhesa “Ray” S. Farmer Distinguished Chair of Embedded Computing Systems and Georgia Research Alliance Eminent Scholar
Georgia Institute of Technology
Prof. Karl-Erik Årzén
Department of Automatic Control
ELLIIT: the Linköping-Lund initiative on IT and mobile communication
Prof. Jörg Henkel
CES – Chair for Embedded Systems Department of Computer Science
Karlsruhe Institute of Technology (KIT)
Associate Prof. David Atienza Alonso
Head of the Embedded Systems Laboratory (ESL) at EPFL
École polytechnique fédérale de Lausanne (EPFL)
Assistant Prof. Fontas Fafoutis
DTU Compute, Department of Applied Mathematics and Computer Science
Technical University of Denmark
Anders Mynster is a standardization expert in ISO/IEC SC41, chair of the IEEE European public policy committee on ICT, member of the standardization political forum and the Danish standards institute and member of the EU technical expert group at the Danish industry association. In this presentation Anders will takes us through the new ISO/IEC 30141 – IoT reference architecture. That can serve as a technical overview of the technical building blocks, essential for creating a new architecture. It also introduces characteristics that are essential to an IoT solution and the roles needed for the development, service delivery and users. After the break, Anders will takes us through the essential requirements for the inner market in Europe to get the CE marking, ie. The New legislative framework directives and the associated standards. Lastly he will briefly talk about the political trends in cybersecurity in relation to standardized and harmonized requirements.
The Internet of Things (IoT) has been hailed as the next frontier of innovation in which our everyday objects are connected in ways that improve our lives and transform industries. The IoT concept is poised to change the way medical wearables are designed and connecting all of us to advanced healthcare services, but major key challenges remain in achieving this potential due to inherent resource-constrained nature of IoT wearables, coupled with the computing power requirements of Big Data medical applications, which can result in degraded and unreliable behavior of IoT medical devices, or a global energy crisis when IoT is fully deployed in the future. In this keynote David Atienza will first discuss the challenges of ultra-low power design and communication in medical wearables for the IoT era and their potential system misbehavior induced by reliability issues and scaled voltages. Then, he will showcase the opportunities for next-generation smart medical wearables that combine new embedded systems architecture including novel nanotechnologies and a better understanding on how living organisms operate with advanced machine learning techniques, in order to gracefully scale the energy consumption and precision of the medical applications to the requirements of our surrounding IoT world.
This lecture focuses on efficient design of IoT from the angles of various application scenarios:
The lecture starts with a survey of IoT technologies for embedded computing and provides as well an overview of machine learning for IoT.
Edge Intelligence is the intersection of Internet-of-Things technology and machine learning. Machine learning has great promise in many applications that are also relevant to IoT. IoT technological capabilities (limited bandwidth, low power) and application constraints (privacy, latency) suggest that not all machine learning can be performed in the cloud. This talk will survey IoT system architecture characteristics, motivate the need for machine learning in IoT applications, discuss relevant challenges and survey recent work in the area.
Small IoT devices are inherently brittle to program due to lack of memory protection, limited resources, and only a thin layer of operating system support. Developers link all the firmware together and deploy it as a whole, thus making every single change a full, reboot-required system update that potentially wrecks havoc with the overall system integrity. Isn’t it time that we make the platforms more modern and robust – and start deploying and updating software components and apps independently?
Bio: COO Claus Bak Petersen, Toitware has more than 30 years of experience in founding, growing, and running companies and taking them from an idea to global commercial success. His background is electronics engineering and his product expertise spans both cloud solutions and embedded hardware. He holds an MSc from DTU.
Disruption occurs faster and faster and virtually all industries and subjects are affected. The last wave of Disruption is Analytics / Big Data / AI, and it is clear that there are huge gains to be gained, both for cost, service level and earnings.
Digital disruption remains challenging as the strategies are complex and multidimensional, and even when the strategy is clear, digital transformations are still extremely complex to implement as they cross organizational and technical dimensions.
This talk seeks to cover three dimensions of Digital disruption;
1) How to formulate a digital strategy, resulting in a portfolio of strategic projects
2) How to execute the strategy across organizational and technical boundaries
3) How to observe results so that execution can be adjusted
At the lower end of the IoT spectrum, we find sensors and other data generating devices that are characterised by severe resource constraints: they are often battery-powered and have low resources in terms of processing power and memory. These devices generate raw data, which are, in turn, transferred over a low-power wireless network to an IoT gateway that lies in the root of the low-power network. Thereafter, the raw data are either processed at the IoT gateway, following the principle of Fog Computing, or transferred and processed at the cloud, following the principle of Cloud Computing. In this lecture, we will focus on the security aspects of the low-power wireless network that provides the necessary infrastructure for raw data acquisition. In the first part of the lecture, we will introduce low-power wireless networking standards, as well as their security features. We will focus, in particular, on the ‘Industrial Internet’ protocol stack proposed by the IETF, which aims to bring the reliability of industrial wireless standards in low-power IPv6 networks. In the second part of the lecture, we will discuss about the challenge of encryption key distribution in low-end IoT devices; we will discuss practical ways to install static encryption keys in large-scale deployments.
The Internet-of-Things is a core technology for realizing the full potential of the Industry 4.0 vision. It has been made possible by the exponential growth in computing power, storage capacity and communication bandwidth fueled by Moore’s Law. Until now, we have largely focused on instrumenting and controlling our macro world – smart manufacturing, smart cities and smart healthcare – to name a few. But what will happen when we are able to monitor and control at the nano-scale? The internet-of-Bio-NanoThings promises to enable applications such as intra-body sensing and actuation networks, and environmental control of toxic agents and pollution. This is a paradigm-shifting concept for computing, communication and network engineering, where novel challenges are faced to develop efficient and safe techniques for computing and for the exchange of information, interaction, and networking within the biochemical domain, while enabling an interface to the electrical domain of the Internet.