PUBLICATIONS

2024

[25] Insight into the Synergistic Effect of the Oxide–Metal Interface on Hot Electron Excitation

Lee, E.; Jeon, B.; Choi, H.; Kim, J.; Kim, J.; Han, G.; An, K.; Kim, H. Y.; Park, J. Y.; Lee, S. W.

ACS Catal. 2024, 14 (8), 5520-5530. [Link]

2023

[24] Unraveling surface structures of gallium promoted transition metal catalysts in CO2 hydrogenation

Lee, S. W.;  Luna, M. L.;  Berdunov, N.;  Wan, W.;  Kunze, S.;  Shaikhutdinov, S.; Roldan Cuenya, B.

Nat. Commun. 2023, 14 (1), 4649. [Link]

[23] Interaction of Gallium with a Copper Surface: Surface Alloying and Formation of Ordered Structures

Lee, S. W.;  Subramanian, A.;  Zamudio, F. B.;  Zhong, J. Q.;  Kozlov, S. M.;  Shaikhutdinov, S.; Roldan Cuenya, B.

J. Phys. Chem. C 2023, 127 (42), 20700-20709. [Link]

[22] Hot electron-driven chemical reactions: A review

Lee, S. W.

Appl. Surf. Sci. Adv. 2023, 16, 100428. [Link]

[21] Hot electron chemistry in catalytic reactions

Lee, S. W.

Trends Chem. 2023, 5 (7), 561-571. [Link]

[20] How Hot Electron Generation at the Solid–Liquid Interface Is Different from the Solid–Gas Interface

Lee, S. W.;  Kim, H.; Park, J. Y.

Nano Lett. 2023, 23 (11), 5373-5380. [Link]

2022

[19] Hot electron phenomena at solid–liquid interfaces

Lee, S. W.;  Jeon, B.;  Lee, H.; Park, J. Y.

J. Phys. Chem. Lett. 2022, 13 (40), 9435-9448. [Link]

2021

[18] Surface chemistry of hot electron and metal-oxide interfaces

Lee, S. W.;  Lee, H.;  Park, Y.;  Kim, H.;  Somorjai, G. A.; Park, J. Y.

Surf. Sci. Rep. 2021, 76 (3), 100532. [Link]

[17] Controlling hot electron flux and catalytic selectivity with nanoscale metal-oxide interfaces

Lee, S. W.;  Kim, J. M.;  Park, W.;  Lee, H.;  Lee, G. R.;  Jung, Y.;  Jung, Y. S.; Park, J. Y.

Nat. Commun. 2021, 12 (1), 40. [Link]

2020

[16] Operando surface characterization on catalytic and energy materials from single crystals to nanoparticles

Choi, J. I. J.;  Kim, T.-S.;  Kim, D.;  Lee, S. W.; Park, J. Y.

ACS Nano 2020, 14 (12), 16392-16413. [Link]

[15] Engineering nanoscale interfaces of metal/oxide nanowires to control catalytic activity

Song, H. C.;  Lee, G. R.;  Jeon, K.;  Lee, H.;  Lee, S. W.;  Jung, Y. S.; Park, J. Y.

ACS Nano 2020, 14 (7), 8335-8342. [Link]

2019

[14] Intrinsic relation between hot electron flux and catalytic selectivity during methanol oxidation

Lee, S. W.;  Park, W.;  Lee, H.;  Chan Song, H.;  Jung, Y.; Park, J. Y.

ACS Catal. 2019, 9 (9), 8424-8432. [Link]

[13] Facile tuning of Metal/Oxide interface in hollow nanoreactor affecting catalytic activity and selectivity

Lee, S. W.;  Lee, H.;  Lee, D.-G.;  Oh, S.;  Lee, I. S.; Park, J. Y.

Catal. Lett. 2019, 149, 119-126. [Link]

[12] The effect of the oxidation states of supported oxides on catalytic activity: CO oxidation studies on Pt/cobalt oxide

Song, H. C.; Oh, S.; Kim, S. H.; Lee, S. W.; Moon, S. Y.; Choi, H.; Kim, S.-H.; Kim, Y.; Oh, J.; Park, J. Y.

Chem. Commun. 2019, 55 (64), 9503-9506. [Link]

2018

[11] Adsorbate-driven reactive interfacial Pt-NiO1−x nanostructure formation on the Pt3Ni(111) alloy surface

Kim, J.; Park, W. H.; Doh, W. H.; Lee, S. W.; Noh, M. C.; Gallet, J.-J.; Bournel, F.; Kondoh, H.; Mase, K.; Jung, Y.; Mun, B. S.; Park, J. Y.

Sci. Adv. 2018, 4 (7), eaat3151. [Link]

[10] Isotope Effect of Hot Electrons Generated on Pt Nanoparticle Surfaces Under H2 and D2 Oxidation

Lee, H.;  Nedrygailov, I. I.;  Lee, S. W.; Park, J. Y.

Top. Catal. 2018, 61, 915-922. [Link]

[9] Hot electron generation on metal catalysts under surface reaction: Principles, devices, and application

Nedrygailov, I. I.;  Lee, H.;  Lee, S. W.; Park, J. Y.

Chin. Chem. Lett. 2018, 29 (6), 727-733. [Link]

[8] Compositional effect of two-dimensional monodisperse AuPd bimetallic nanoparticle arrays fabricated by block copolymer nanopatterning on catalytic activity of CO oxidation

Kim, S. M.;  Mun, J. H.;  Lee, S. W.;  An, H.;  Kim, H. Y.;  Kim, S. O.; Park, J. Y.

Chem. Commun. 2018, 54 (97), 13734-13737. [Link]

[7] Enhanced catalytic activity for CO oxidation by the metal–oxide perimeter of TiO2/nanostructured Au inverse catalysts

Lee, S. W.;  Song, J. T.;  Kim, J.;  Oh, J.; Park, J. Y. 

Nanoscale 2018, 10 (8), 3911-3917. [Link]

[6] The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu2O/hexoctahedral Au inverse catalyst

Lee, S. W.;  Hong, J. W.;  Lee, H.;  Wi, D. H.;  Kim, S. M.;  Han, S. W.; Park, J. Y.

Nanoscale 2018, 10 (23), 10835-10843. [Link]

2017

[5] Nanospace-confined high-temperature solid-state reactions: Versatile synthetic route for high-diversity pool of catalytic nanocrystals

Koo, J. H.;  Lee, S. W.;  Park, J. Y.; Lee, I. S.

Chem. Mater. 2017, 29 (21), 9463-9471. [Link]

[4] Strategies for hot electron-mediated catalytic reactions: Catalytronics

Park, J. Y.;  Lee, S. W.;  Lee, C.; Lee, H.

Catal. Lett. 2017, 147, 1851-1860. [Link]

[3] Surface plasmon-driven catalytic reactions on a patterned Co3O4/Au inverse catalyst

Lee, S. W.;  Lee, C.;  Goddeti, K. C.;  Kim, S. M.; Park, J. Y.

RSC Adv. 2017, 7 (88), 56073-56080. [Link]

2016

[2] Postsynthesis modulation of the catalytic interface inside a hollow nanoreactor: exploitation of the bidirectional behavior of mixed-valent Mn3O4 phase in the galvanic replacement reaction

Lee, D.-G.;  Kim, S. M.;  Kim, S. M.;  Lee, S. W.;  Park, J. Y.;  An, K.; Lee, I. S.

Chem. Mater. 2016, 28 (24), 9049-9055. [Link]

[1] The effect of hot electrons and surface plasmons on heterogeneous catalysis

Kim, S. M.;  Lee, S. W.;  Moon, S. Y.; Park, J. Y.

J. Phys.: Condens. Matter 2016, 28 (25), 254002. [Link]